Effective mitigation of surface ozone pollution entails detailed knowledge of the contributing precursors' sources. We use the GEOS-Chem adjoint model to analyze the precursors contributing to surface ozone in the Beijing−Tianjin−Hebei area (BTH) of China on days of different ozone pollution severities in June 2019. We find that BTH ozone on heavily polluted days is sensitive to local emissions, as well as to precursors emitted from the provinces south of BTH (Shandong, Henan, and Jiangsu, collectively the SHJ area). Heavy ozone pollution in BTH can be mitigated effectively by reducing NO x (from industrial processes and transportation), ≥C 3 alkenes (from on-road gasoline vehicles and industrial processes), and xylenes (from paint use) emitted from both BTH and SHJ, as well as by reducing CO (from industrial processes, transportation, and power generation) and ≥C 4 alkanes (from industrial processes, paint and solvent use, and on-road gasoline vehicles) emissions from SHJ. In addition, reduction of NO x , xylene, and ≥C 3 alkene emissions within BTH would effectively decrease the number of BTH ozone-exceedance days. Our analysis pinpoint the key areas and activities for locally and regionally coordinated emission control efforts to improve surface ozone air quality in BTH.
Abstract. We present the WRF-GC model v2.0, an online two-way coupling of the Weather Research and Forecasting (WRF) meteorological model (v3.9.1.1) and the GEOS-Chem model (v12.7.2). WRF-GC v2.0 is built on the modular framework of WRF-GC v1.0 and further includes aerosol–radiation interaction (ARI) and aerosol–cloud interaction (ACI) based on bulk aerosol mass and composition, as well as the capability to nest multiple domains for high-resolution simulations. WRF-GC v2.0 is the first implementation of the GEOS-Chem model in an open-source dynamic model with chemical feedbacks to meteorology. In WRF-GC, meteorological and chemical calculations are performed on the exact same 3-D grid system; grid-scale advection of meteorological variables and chemical species uses the same transport scheme and time steps to ensure mass conservation. Prescribed size distributions are applied to the aerosol types simulated by GEOS-Chem to diagnose aerosol optical properties and activated cloud droplet numbers; the results are passed to the WRF model for radiative and cloud microphysics calculations. WRF-GC is computationally efficient and scalable to massively parallel architectures. We use WRF-GC v2.0 to conduct sensitivity simulations with different combinations of ARI and ACI over China during January 2015 and July 2016. Our sensitivity simulations show that including ARI and ACI improves the model's performance in simulating regional meteorology and air quality. WRF-GC generally reproduces the magnitudes and spatial variability of observed aerosol and cloud properties and surface meteorological variables over East Asia during January 2015 and July 2016, although WRF-GC consistently shows a low bias against observed aerosol optical depths over China. WRF-GC simulations including both ARI and ACI reproduce the observed surface concentrations of PM2.5 in January 2015 (normalized mean bias of −9.3 %, spatial correlation r of 0.77) and afternoon ozone in July 2016 (normalized mean bias of 25.6 %, spatial correlation r of 0.56) over eastern China. WRF-GC v2.0 is open source and freely available from http://wrf.geos-chem.org (last access: 20 June 2021).
The impacts of weather forecast uncertainties have not been quantified in current air quality forecasting systems. To address this, we developed an efficient 2‐D convolutional neural network‐surface ozone ensemble forecast (2DCNN‐SOEF) system using 2‐D convolutional neural network and weather ensemble forecasts, and we applied the system to 216‐hr ozone forecasts in Shenzhen, China. The 2DCNN‐SOEF demonstrated comparable performance to current operating forecast systems and met the air quality level forecast accuracies required by the Chinese authorities up to 144‐hr lead time. Uncertainties in weather forecasts contributed 38%–54% of the ozone forecast errors at 24‐hr lead time and beyond. The 2DCNN‐SOEF enabled an “ozone exceedance probability” metric, which better represented the risks of air pollution given the range of possible weather outcomes. Our ensemble forecast framework can be extended to operationally forecast other meteorology‐dependent environmental risks globally, making it a valuable tool for environmental management.
Geo-Agents, a multi-agent system that processes distributed geospatial information and geospatial service was presented. Firstly, the requirement for distributed geographical information process was discussed, and the architecture of Geo-Agents was introduced. Then in-depth discussions were raised on agent system implementation, such as the basic agent, agent advertising, message passing, and collaborating. An example was also given to explain the problem solving process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.