In microseismic monitoring, achieving an accurate and efficient first-arrival picking is crucial for improving the accuracy and efficiency of microseismic time-difference source location. In the era of big data, the traditional first-arrival picking method cannot meet the real-time processing requirements of microseismic monitoring process. Using the advanced idea of deep learning-based end-to-end classification and the prominent feature extraction advantages of a fully convolution neural network, this paper proposes a first-arrival picking method of effective signals for microseismic monitoring based on UNet++ network, which can significantly improve the accuracy and efficiency of first-arrival picking. In this paper, we first introduced the methodology of the UNet++-based picking method. And then, the performance of the proposed method is verified by the experiments with finite-difference forward modeling simulated signals and actual microseismic records under different signal-to-noise ratios, and finally, comparative experiments are performed using the U-Net-based first-arrival picking algorithm and the Short-Term Average to Long-Term Average (STA/LTA) algorithm. The results show that compared to the U-Net network, the proposed method can obviously improve the first-arrival picking accuracy of the low signal-to-noise ratio microseismic signals, achieving significantly higher accuracy and efficiency than the STA/LTA algorithm, which is famous for its high efficiency in traditional algorithms.
Arrival-time picking of microseismic events is a critical procedure in microseismic data processing. However, as field monitoring data contain many microseismic events with low signal-to-noise ratios (SNRs), traditional arrival-time picking methods based on the instantaneous characteristics of seismic signals cannot meet the picking accuracy and efficiency requirements of microseismic monitoring owing to the large volume of monitoring data. Conversely, methods based on deep neural networks can significantly improve arrival-time picking accuracy and efficiency in low-SNR environments. Therefore, we propose a deep convolutional network that combines the U-net and DenseNet approaches to pick arrival times automatically. This novel network, called MSNet not only retains the spatial information of any input signal or profile based on the U-net, but also extracts and integrates more essential features of events and non-events through dense blocks, thereby further improving the picking accuracy and efficiency. An effective workflow is developed to verify the superiority of the proposed method. First, we describe the structure of MSNet and the workflow of the proposed picking method. Then, datasets are constructed using variable microseismic traces from field microseismic monitoring records and from the finite-difference forward modeling of microseismic data to train the network. Subsequently, hyperparameter tuning is conducted to optimize the MSNet. Finally, we test the MSNet using modeled signals with different SNRs and field microseismic data from different monitoring areas. By comparing the picking results of the proposed method with the results of U-net and short-term average and long-term average (STA/LTA) methods, the effectiveness of the proposed method is verified. The arrival picking results of synthetic data and microseismic field data show that the proposed network has increased adaptability and can achieve high accuracy for picking the arrival-time of microseismic events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.