Background:
Optimization of fat grafting continues to gain increasing attention in the field of regenerative medicine. “Nanofat grafting” implements mechanical emulsification and injection of standard lipoaspirate for the correction of superficial rhytides and skin discoloration; however, little is known about the cellular constituents of the graft. Based on recent evidence that various stressors can induce progenitor activity, the authors hypothesized that the shear forces used in common fat grafting techniques may impact their regenerative capacities.
Methods:
Lipoaspirates were obtained from 10 patients undergoing elective procedures. Half of each sample was subjected to nanofat processing; the other half was left unchallenged. The viscosity of each sample was measured for computational analysis. The stromal vascular fraction of each sample was isolated, quantified, and analyzed by means of flow cytometry with two multicolor fluorescence antibody panels.
Results:
Standard lipoaspirate is ideally suited for mechanical stress induction. The mechanical emulsification involved in nanofat processing did not affect cell number; however, viability was greatly reduced when compared with the stromal vascular fraction of standard lipoaspirate. Interestingly, nanofat processing resulted in stress-induced stromal vascular fraction with a higher proportion of endothelial progenitor cells, mesenchymal stem cells, and multilineage differentiating stress-enduring cells. Single-parameter analysis also revealed significant increases in CD34, CD13, CD73, and CD146 of the stress-induced stromal vascular fraction, markers associated with mesenchymal stem cell activity.
Conclusions:
Mechanical processing used in techniques such as nanofat grafting induces the up-regulation of progenitor phenotypes consistent with multipotency and pluripotency. These data provide a first step in characterizing the potential regenerative benefits realized through stress induction in fat grafting.
CLINCAL QUESTION/LEVEL OF EVIDENCE:
Therapeutic, V.
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a globally important wheat disease causing severe yield losses, and deployment of resistant varieties is the preferred choice for managing this disease. Chinese wheat landrace Datoumai was resistant to 22 of 23 Bgt isolates at the seedling stage. Genetic analysis based on the inoculation of Bgt isolate E09 on the F1, F2, and F2:3 populations derived from the cross Datoumai × Huixianhong revealed that the powdery mildew resistance of Datoumai is controlled by a single dominant gene, temporarily designated as PmDTM. Bulked segregant analysis and simple sequence repeat mapping with 200 F2 plants showed that PmDTM was located in the same genetic region as Pm24 on chromosome 1DS. To fine map PmDTM, 12 critical recombinants were identified from 1,192 F2 plants and delimited PmDTM to a 0.5-cM Xhnu58800 to Xhnu59000 interval covering 180.5 Kb (38,728,125 to 38,908,656 bp) on chromosome 1DS, and only one highly confident gene, TraesCS1D02G058900, was annotated within this region. TraesCS1D02G058900 encodes a receptor-like serine/threonine-protein kinase (STK), and a 6-bp deletion in exon 5 may confer the resistance to powdery mildew. Allele frequency analysis indicated that the STK allele with 6-bp deletion was only present in three landraces (Datoumai, Chiyacao [Pm24], and Hulutou) and was absent in all of the 353 Chinese modern cultivars and 147 foreign cultivars. These results demonstrate that PmDTM is mapped to the same locus as Pm24 and can be widely used to enhance powdery mildew resistance in wheat growing regions worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.