Monolayer molybdenum disulfide (MoS2) is a two-dimensional direct band gap semiconductor with unique mechanical, electronic, optical, and chemical properties that can be utilized for novel nanoelectronics and optoelectronics devices. The performance of these devices strongly depends on the quality and defect morphology of the MoS2 layers. Here we provide a systematic study of intrinsic structural defects in chemical vapor phase grown monolayer MoS2, including point defects, dislocations, grain boundaries, and edges, via direct atomic resolution imaging, and explore their energy landscape and electronic properties using first-principles calculations. A rich variety of point defects and dislocation cores, distinct from those present in graphene, were observed in MoS2. We discover that one-dimensional metallic wires can be created via two different types of 60° grain boundaries consisting of distinct 4-fold ring chains. A new type of edge reconstruction, representing a transition state during growth, was also identified, providing insights into the material growth mechanism. The atomic scale study of structural defects presented here brings new opportunities to tailor the properties of MoS2 via controlled synthesis and defect engineering.
Single layered molybdenum disulfide with a direct bandgap is a promising twodimensional material that goes beyond graphene for next generation nanoelectronics. Here, we report the controlled vapor phase synthesis of molybdenum disulfide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Atomic layered graphene has shown many fascinating properties as a supplement to silicon-based semiconductor technologies [1][2][3][4] . Consequently, great effort has been devoted to the development and understanding of its synthetic processes [5][6][7][8] . However, graphene with its high leaking current, due to its zero bandgap energy, is not suitable for many applications in electronics and optics 9, 10 . Recent developments in two different classes of materials -transition metal oxides and sulfides -have shown many promises to fill the existing gaps [10][11][12] . For example, the successful demonstration of molybdenum disulfide (MoS 2 )-based field-effect transistors (FET) 11 , has prompted an intense exploration of the physical properties of few-layered MoS 2 films [13][14][15][16][17] .MoS 2 is a layered semiconductor with a bandgap in the range of 1.2-1.8 eV, whose physical properties are significantly thickness-dependent 13,14 . For instance, a considerable enhancement in the photoluminescence of MoS 2 has been observed as the thickness of the material decreases 14 . The lack of inversion symmetry in single-layer Initially, small triangular domains were nucleated at random locations on the bare substrate (Fig. 1a). Then, the nucleation sites continued to grow and formed boundaries when two or more domains met (Figs. 1b and 1c), resulting in a partially continuous film.This process can eventually extend into large-area single-layered MoS 2 continuous films if sufficient precursor supply and denser nucleation sites are provided (Fig. 1d) In the quest for feasible strategies to control the nucleation process, we take advantage of some of our common experimental observations. Our experiments show that the MoS 2 triangular domains and films are commonly nucleated and formed in the vicinity of the substrates' edges, scratches, dust particles, or rough surfaces (supplementary Fig. S4).We utilized this phenomenon to control the nucleation by strategically creating step edges on substrates using conventional lithography processes (Fig. 1e). The patterned substrates with uniform distribution of rectangular SiO 2 pillars (40×40 μm 2 in size, 40 μm apart, and ~40 nm thick) were directly used in the CVD process for MoS 2 growth ( The inherent dependence of this approach on the edge-based nucleation resembles some of the observations and theoretical predictions in the growth other layered materials [29][30] .Theoretical studies have revealed a significant reduction in the energy barrier of graphene nucleation close to the step edges, as compared to flat surfaces of transition metal substrates 30 . We propose that similar edge-based catalytic pr...
Two-dimensional (2D) materials have attracted increasing research interest because of the abundant choice of materials with diverse and tunable electronic, optical, and chemical properties. Moreover, 2D material based heterostructures combining several individual 2D materials provide unique platforms to create an almost infinite number of materials and show exotic physical phenomena as well as new properties and applications. To achieve these high expectations, methods for the scalable preparation of 2D materials and 2D heterostructures of high quality and low cost must be developed. Chemical vapor deposition (CVD) is a powerful method which may meet the above requirements, and has been extensively used to grow 2D materials and their heterostructures in recent years, despite several challenges remaining. In this review of the challenges in the CVD growth of 2D materials, we highlight recent advances in the controlled growth of single crystal 2D materials, with an emphasis on semiconducting transition metal dichalcogenides. We provide insight into the growth mechanisms of single crystal 2D domains and the key technologies used to realize wafer-scale growth of continuous and homogeneous 2D films which are important for practical applications. Meanwhile, strategies to design and grow various kinds of 2D material based heterostructures are thoroughly discussed. The applications of CVD-grown 2D materials and their heterostructures in electronics, optoelectronics, sensors, flexible devices, and electrocatalysis are also discussed. Finally, we suggest solutions to these challenges and ideas concerning future developments in this emerging field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.