Time-frequency analysis is recognized as a dynamic tool to analyze the nonstationary signal. The synchrosqueezing transform is usually applied as a post-processing method to further improve the readability of the time-frequency representation. Synchrosqueezing transform is related to the reassignment method and can be performed in two directions, namely time direction and frequency direction. Frequency-direction reassignment helps to squeeze the slowly changing ridge. However, the time-direction reassignment is efficient to process the signal with rapid variation in instantaneous frequency. Thus, there exists a conflict in most of the time-frequency analysis methods while dealing with a signal containing both of these two components. In this study, a new method called demodulated time-direction synchrosqueezing transform is introduced, which is not only capable of achieving a higher compact TFR but also allow reconstructing the mode. In order to explain demodulated time-direction synchrosqueezing transform, a signal model is established in frequency domain. Then, a demodulated procedure is implemented to eliminate time-frequency analysis diffusion. Finally, time-direction reassignment is carried out to further enhance the energy concentration of the time-frequency analysis. The proposed demodulated time-direction synchrosqueezing transform method is evaluated by both simulation and experimental research. The results reveal that the performance of demodulated time-direction synchrosqueezing transform is better than the conventional time-frequency analysis methods, and it can be applied to the fault diagnosis in a machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.