Nickel oxide (NiO) nanoparticles from several manufacturers with different reported sizes and surface coatings were characterized prior to assessing their cellular toxicity. The physical characterization of these particles revealed that sizes often varied from those reported by the supplier, and that particles were heavily agglomerated when dispersed in water, resulting in a smaller surface area and larger hydrodynamic diameter upon dispersion. Cytotoxicity testing of these materials showed differences between samples; however, correlation of these differences with the physical properties of the materials was not conclusive. Generally, particles with higher surface area and smaller hydrodynamic diameter were more cytotoxic. While all samples produced an increase in reactive oxygen species (ROS), there was no correlation between the magnitude of the increase in ROS and the difference in cytotoxicity between different materials.
Cerium oxide nanoparticles are promising materials as novel nanoscale therapeutics and are commonly used materials in industrial processes. Most cytotoxicity studies on cerium oxide nanoparticles are made from in-lab prepared materials making comparison between studies challenging, especially when performed on unique cell lines under non-standard conditions. Using commercially available nanoparticles we show that particle stability/agglomeration may be critical in determining the cytotoxicity in some cell lines, while in other cell lines, larger sized primary particles are linked to higher cytotoxicity, contrasting what has been reported in the literature for smaller cerium nanoparticles. To accelerate the development of cerium oxide enabled commercial processes and biomedical innovations, a clearer understanding of the interactions between cerium oxide nanoparticles and cells is needed to better understand their fate in and impact on biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.