Alterations in resting-state networks (RSNs) are often associated with psychiatric and neurologic disorders. Given this critical linkage, it has been hypothesized that RSNs can potentially be used as endophenotypes for brain diseases. To validate this notion, a critical step is to show that RSNs exhibit heritability. However, the investigation of the genetic basis of RSNs has only been attempted in the default-mode network at the region-of-interest level, while the genetic control on other RSNs has not been determined yet. Here we examined the genetic and environmental influences on eight well-characterized RSNs by using a twin design. Resting-state functional magnetic resonance imaging data in 56 pairs of twins were collected. The genetic and environmental effects on each RSN were estimated by fitting the functional connectivity covariance of each voxel in the RSN to the classic ACE twin model. The data showed that although environmental effects accounted for the majority of variance in widespread areas, there were specific brain sites that showed significant genetic control for individual RSNs. These results suggest that part of the human brain functional connectome is shaped by genomic constraints. Importantly, this information can be useful for bridging genetic analysis and network-level assessment of brain disorders.
Hamartomas are extremely rare splenic benign tumours in children. We present two cases, both in boys (6 and 8 years old), with left upper quadrant abdominal pain that were otherwise asymptomatic. Both patients showed a splenic mass on preoperative ultrasonography and magnetic resonance imaging (MRI). One patient had a focal splenic mass that was identified preoperatively with contrasted computed tomography (CT) scans. Both patients underwent a total splenectomy. Although multi-modality imaging findings were described preoperatively, the final diagnosis in each case was splenic hamartoma based on histology and immunohistochemistry. The postoperative courses were uneventful.
Background: Bone age can reflect the true growth and development status of a child; thus, it plays a critical role in evaluating growth and endocrine disorders. This study established and validated an optimized Tanner-Whitehouse 3 artificial intelligence (TW3-AI) bone age assessment (BAA) system based on a convolutional neural network (CNN).Methods: A data set of 9,059 clinical radiographs of the left hand was obtained from the picture archives and communication systems (PACS) between January 2012 and December 2016. Among these, 8,005/9,059 (88%) samples were treated as the training set for model implementation, 804/9,059 (9%) samples as the validation set for parameters optimization, and the remaining 250/9,059 (3%) samples were used to verify the accuracy and reliability of the model compared to that of 4 experienced endocrinologists and 2 experienced radiologists. The overall variation of TW3-metacarpophalangeal, radius, ulna and short bones (RUS) and TW3-Carpal bone score, as well as each bone (13 RUS + 7 Carpal) between reviewers and the AI, were compared by Bland-Altman (BA) chart and Kappa test, respectively. Furthermore, the time consumption between the model and reviewers was also compared.
Results:The performance of TW3-AI model was highly consistent with the reviewers' overall estimation, and the root mean square (RMS) was 0.50 years. The accuracy of the BAA of the TW3-AI model was better than the estimate of the reviewers. Further analysis revealed that human interpretations of the male capitate, hamate, the first distal and fifth middle phalanx and female capitate, the trapezoid, and the third and fifth middle phalanx, were most inconsistent. The average image processing time was 1.5±0.2 s in the TW3-AI model, which was significantly shorter than manual interpretation.
Conclusions:The diagnostic performance of CNN-based TW3 BAA was accurate and timesaving, and possesses better stability compared to diagnostics made by experienced experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.