A series of nanofibrous scaffolds were prepared by electrospinning of poly(vinyl alcohol) (PVA)/gelatin aqueous solution. PVA and gelatin was dissolved in pure water and blended in full range, then being electrospun to prepared nanofibers, followed by being crosslinked with glutaraldehyde vapor and heat treatment to form nanofibrous scaffold. Field emission scanning electron microscope (FESEM) images of the nanofibers manifested that the fiber average diameters decreased from 290 to 90 nm with the increasing of gelatin. In vitro degradation rates of the nanofibers were also correlated with the composition and physical properties of electrospinning solutions. Cytocompatibility of the scaffolds was evaluated by cells morphology and MTT assay. The FESEM images revealed that NIH 3T3 fibroblasts spread and elongated actively on the scaffolds with spindle-like and star-type shape. The results of cell attachment and proliferation on the nanofibrous scaffolds suggested that the cytotoxicity of all samples are grade 1 or grade 0, indicating that the material had sound biosafety as biomaterials. Compared with pure PVA and gelatin scaffolds, the hybrid ones possess improved biocompatibility and controllability. These results indicate that the PVA/gelatin nanofibrous have potential as skin scaffolds or wound dressing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.