miR-93 was increased in PCOS granulosa cells and targeted CDKN1A to promote proliferation and cell cycle progression. Insulin could upregulate the expression of miR-93 and stimulate cell proliferation. This might provide a new insight into the dysfunction of granulosa cells in PCOS.
Objectives. To evaluate pregnancy outcomes and its determinants in women with polycystic ovary syndrome (PCOS). Methods. Two-hundred and twenty pregnant PCOS and 594 healthy women were followed from early pregnancy. Incidences of gestational diabetes mellitus (GDM), pregnancy-induced hypertension (PIH), preterm birth, twinning, and fetal growth restriction (FGR) were determined. Results. The incidence of GDM was notably higher among all PCOS combined (54.9%; OR: 2.9, 95% CI: 2.0–4.1) and PCOS subgroups, whether they conceived spontaneously (51.5%; OR: 3.3, 95% CI: 2.0–5.4), or via IVF-ET or ovarian stimulation, compared with controls (14.3%; P < 0.001). The incidence of PIH was also higher among all PCOS (10.4%; OR: 2.2, 95% CI: 1.1–4.4) and the subgroup conceiving spontaneously (11.8%; OR: 2.6, 95% CI: 1.1–6.2; P < 0.001) but not for those conceiving with IVF-ET (9.1%) or ovarian stimulation (9.4%). Lean women with PCOS (BMI <24 kg/m2) had higher incidences of GDM (51.1% versus 14.5%; OR: 5.6, 95% CI: 3.4–9.0) and PIH (8.9% versus 3.2%; OR: 3.0, 95% CI: 1.3–7.1) than lean controls. PCOS woemn with normal glucose tolerance had higher risk for PIH than their comparable control group (OR: 4.0, 95% CI: 1.3–11.7). Conclusion. This study suggested that PCOS is an independent risk factor for the development of GDM and PIH. This trial is registered with ChiCTR-RCC-11001824.
Gonadal soma-derived factor (gsdf) is reported to be a male initiator in medaka based on loss- and gain- of function via targeted disruption, or transgenic over-expression. However, little is known about how gsdf promotes undifferentiated gonad entry into male pathways or prevents entry into the female pathway. We utilized a visible folliculogenesis system with a reporter cassette of dual-color fluorescence expression to identify difference between oocyte development from wildtype and gsdf deficiency medaka. A red fluorescent protein (RFP) is driven by a major component of the synaptonemal complex (SYCP3) promoter which enables RFP expression solely in oocytes after the onset of meiosis, and a histone 2b-EGFP fused protein (H2BEGFP) under the control of an elongation factor (EF1α) promoter, wildly used as a mitotic reporter of cell cycle. This mitosis-meiosis visible switch revealed that early meiotic oocytes present in gsdf deficiency were more than those in wildtype ovaries, corresponding to the decrease of inhibin expression detected by real-time qPCR analysis, suggesting gsdf is tightly involved in the process of medaka oocyte development at early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.