Shocks are abundant in star-forming regions, and are often related with star formation. In our previous observations toward 100 starless clump candidates (SCCs) in the Galaxy, a sample of 34 SCCs associated with shocks is identified. In this work, we perform mapping observations of the SiO 2-1, 3-2, HC 3 N 10-9, HCO + 1-0, H 13 CO + 1-0, and H41α lines toward 9 out of the detected sources by using IRAM 30-m radio telescope to study the origins of the shocks in the SCCs. We find shocks in three sources (BGPS 3110, 3114, and 3118) are produced by collisions between the expanding ionized gas and ambient molecular gas, instead of by the star formation activity inside SCCs. On the other hand, shocks in the other six sources are related to star formation activity of SCCs. The signatures of protostellar outflows are clearly shown in the molecular lines toward BGPS 4029, 4472, 5064. Comparing our results with the previous ALMA observations performed in the same region, the shocks in BGPS 3686 and 5114 are also likely to be due to protostellar activity. The origin of shock in BGPS 5243 is still unclear although some features in the SiO spectra imply the presence of protostellar activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.