Summary It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical mechanism linking increased EZH2 expression to BTIC (breast tumor initiating cell) regulation and cancer progression remains unclear. Here, we identify a mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion. We further reveal that AZD6244, a clinical trial drug that inhibits RAF1-ERK signaling, could prevent breast cancer progression by eliminating BTICs.
MicroRNA-34a(miR-34a), a pivotal member of the p53 network, was found to be down-regulated in multiple types of tumors and further reported as a tumor suppressor microRNA. However, the profile and biological effects of miR-34a in breast cancer are still unclear. In this study, we aimed to determine the effect of miR-34a on the growth of breast cancer and to investigate whether its effect is achieved by targeting Bcl-2 and SIRT1. We examined miR-34a levels in breast cancer cell lines and breast cancer specimens by qRT-PCR. Proliferation assay, apoptosis assay, and morphological monitoring were performed to assess the tumor suppression effect of miR-34a in breast cancer cell lines. Western blotting was used to identify the targets of miR-34a. We also investigated the anti-tumor effects of the treatment combining miR-34a with 5-FU in breast cancer cells. We found that miR-34a expression was down-regulated in 5 breast cancer cell lines compared with the immortalized normal mammary epithelial cell line 184A1, and was also down-regulated by almost 50 % in breast cancer samples compared with their corresponding adjacent non-malignant breast tissues. Ectopic restoration of miR-34a in breast cancer cells suppressed cells proliferation, invasion, and induced apoptosis. Bcl-2 and SIRT1 as the targets of miR-34a were found to be in reverse correlation with ectopic expression of miR-34a. Furthermore, the treatment combining miR-34a with 5-FU significantly showed more efficient anti-tumor effects than single treatment of miR-34a or 5-FU. Since miR-34a functions as tumor suppressor microRNA in breast cancer, modulating miR-34a level in breast cancer was suggested to be a new and useful approach of breast cancer therapy.
BackgroudAccumulating evidences indicate that circular RNAs (circRNAs), a class of non-coding RNAs, play important roles in tumorigenesis. However, the function of circRNAs in triple negative breast cancer (TNBC) is largely unknown.MethodsWe performed circRNA microarrays to identify circRNAs that are aberrantly expressed in TNBC cell lines. Expression levels of a significantly upregulated circRNA, circGFRA1, was detected by quantitative real-time PCR (qRT-PCR) in TNBC cell lines and tissues. Kaplan-Meier survival analysis was used to explore the significance of circGFRA1 in clinical prognosis. Then, we examined the functions of circGFRA1 in TNBC by cell proliferation, apoptosis and mouse xenograft assay. In addition, luciferase assay was used to explore the miRNA sponge function of circGFRA1 in TNBC.ResultsMicroarray analysis and qRT-PCR verified a circRNA termed circGFRA1 that was upregulated in TNBC. Kaplan-Meier survival analysis showed that upregulated circGFRA1 was correlated with poorer survival. Knockdown of circGFRA1 inhibited proliferation and promoted apoptosis in TNBC. Via luciferase reporter assays, circGFRA1 and GFRA1 was observed to directly bind to miR-34a. Subsequent experiments showed that circGFRA1 and GFRA1 regulated the expression of each other by sponging miR-34a.ConclusionsTaken together, we conclude that circGFRA1 may function as a competing endogenous RNA (ceRNA) to regulate GFRA1 expression through sponging miR-34a to exert regulatory functions in TNBC. circGFRA1 may be a diagnostic biomarker and potential target for TNBC therapy.
Accumulating evidence indicates that circular RNAs (circR-NAs) are vital regulators of various biological functions involved in the progression of multiple cancers. Circular F-box and WD repeat domain containing 7 (circFBXW7) (hsa_circ_0001451) has been reported to act as a tumor suppressor by encoding a novel protein in glioma; however, its functions and mechanisms in triple-negative breast cancer (TNBC) remain elusive. In the current study, we validated by qRT-PCR that circFBXW7 was downregulated in TNBC cell lines and found that low expression of circFBXW7 was associated with poorer clinical outcomes. circFBXW7 expression was negatively correlated with tumor size and lymph node metastasis, and it was an independent prognostic factor for TNBC patients. We performed cell proliferation, colony formation, transwell, wound-healing, and mouse xenograft assays to confirm the functions of circFBXW7. Overexpression of circFBXW7 obviously inhibited cell proliferation, migration, and tumor growth in both in vitro and in vivo assays. Luciferase reporter assays and RNA immunoprecipitation assays revealed that circFBXW7 serves as a sponge of miR-197-3p and suppresses TNBC growth and metastasis by upregulating FBXW7 expression. In addition, the FBXW7-185aa protein encoded by circFBXW7 inhibited the proliferation and migration abilities of TNBC cells by increasing the abundance of FBXW7 and inducing c-Myc degradation. In summary, our research demonstrated that circFBXW7 sponges miR-197-3p and encodes the FBXW7-185aa protein to suppress TNBC progression through upregulating FBXW7 expression. Thus, circFBXW7 may act as a therapeutic target and prognostic biomarker for TNBC.
Myeloid cell leukemia-1 (Mcl-1), an antiapoptotic Bcl-2 family member, is overexpressed in many types of human cancer and associates with cell immortalization, malignant transformation, and chemoresistance. Glycogen synthase kinase-3B (GSK-3B), a key component of the Wnt signaling pathway, is involved in multiple physiologic processes such as protein synthesis, tumorigenesis, and apoptosis. Here, we report that expression of Mcl-1 was correlated with phosphorylated GSK-3B (p-GSK-3B) at Ser 9 (an inactivated form of GSK-3B) in multiple cancer cell lines and primary human cancer samples. In addition, Mcl-1 was strikingly linked with poor prognosis of human breast cancer, in which the high level of Mcl-1 was related to high tumor grade and poor survival of breast cancer patients. Furthermore, we found that activation of GSK-3B could down-regulate Mcl-1 and was required for proteasome-mediated Mcl-1 degradation. Under some physiologic conditions, such as UV irradiation, anticancer drug treatment, and inhibition of growth factor pathways, Mcl-1 was down-regulated through activation of GSK-3B. Our results indicate that Mcl-1 stabilization by GSK-3B inactivation could be involved in tumorigenesis and serve as a useful prognostic marker for human breast cancer. [Cancer Res 2007;67(10):4564-71]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.