Uniform homeotropic and homogeneous alignment of liquid crystals (LCs) is facilely achieved by dispersing Ni nanoparticles (Ni NPs) into the LCs. The alignment mode depends on the morphology of the Ni NPs. The mechanism of NP-induced LC alignment is elucidated clearly, indicating that the perfect orientation arises from the adsorption of Ni NPs on the substrate.
The reactive thermal-sensitive hydrogels, which combined the reversible thermosensitive and mild reactive property, were designed based on thiol-ene reaction in physiological conditions between thiol and acrylate capped thermosensitive Poloxamer 188. The modified P188A, P188SH, and their reactivity were characterized by (1)H NMR, FT-IR, GPC, DSC, Ellman method, and Rheometer. It was found that the thiol-ene reaction was pH and thermal-sensitive. There was 77.7% SH involved into the reaction at 37.0 degrees C and pH 7.4 within the first 30 min. The most of molecules reacted as CC/SH mol ratio was 1.5. The exothermic thiol-ene reaction was mild, with about DeltaH = -91.18 J/g changes. The multiblocks or network structure limited the dissolution of hydrogel, correspondingly the gel's duration and the release time of methylene blue were prolonged to 124 h. The experimental results indicated the reactive thermal-sensitive hydrogel's potential applications in drug delivery, tissue engineering, and cell encapsulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.