Poly-L-lactic acid (PLLA)/hydroxyapatite (HA) hybrid membranes were fabricated via electrospinning of the PLLA/HA dispersion for use in bone tissue regeneration. The structural properties and morphologies of PLLA and PLLA/HA hybrid membrane were investigated by measuring the Brunauer-Emmett-Teller specific surface area, observations of SEM, and TEM. The dispersion and integrating of HA nanoparticles in the hybrid membrane were studied by energy dispersion X-ray analysis and FTIR. The mechanical properties of PLLA/HA membrane were also measured by tensile tests. For exploring biological behaviors of the hybrid membrane, in vitro degradation tests were carried out. The osteoblast cell (MG-63) was cultured in PLLA/HA hybrid membrane extract containing medium; the cell adhesion and growth capability were investigated by SEM observation and MTT assay. HA nanoparticles were not only dispersed in the PLLA but also reacted with the functional group of PLLA, resulting in strong surface bonding and high tensile strength of hybrid membrane. The cell adhesion and growth on the PLLA/HA hybrid membrane were far better than those on the pure PLLA membrane, which proves that the PLLA/HA hybrid membrane can be one of the promising biomaterials for bone tissue regeneration.
The electrospinning of gelatin aqueous solution was successfully carried out by elevating the spinning temperature. The effects of spinning temperature and solution concentration were investigated on the morphology of gelatin nanofibers in the current study. To improve the stability and mechanical properties in moist state, the gelatin nanofibrous membrane was chemically crosslinked by 1-ethyl-3-dimethyl-aminopropyl carbodiimide hydrochloride and N-hydroxyl succinimide. The concentration of crosslinker was optimized by measuring the swelling degree and weight loss. Nanofibrous structure of the membrane was retained after lyophilization, although the fibers were curled and conglutinated. Tensile test revealed that the hydrated membrane becomes pliable and provides predetermined mechanical properties. Periodontal ligament cells cultured on the membrane in vitro exhibited good cell attachment, growth, and proliferation. Gelatin nanofibrous membrane can be one of promising biomaterials for the regeneration of damaged periodontal tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.