This study was to assess the effect of the predictive model for distinguishing clear cell RCC (ccRCC) from non-clear cell RCC (non-ccRCC) by establishing predictive radiomic models based on enhanced-computed tomography (CT) images of renal cell carcinoma (RCC). A total of 190 cases with RCC confirmed by pathology were retrospectively analyzed, with the patients being randomly divided into two groups, including the training set and testing set according to the ratio of 7:3. A total of 396 radiomic features were computationally obtained and analyzed with the Correlation between features, Univariate Logistics and Multivariate Logistics. Finally, 4 features were selected, and three machine models (Random Forest (RF), Support Vector Machine (SVM) and Logistic Regression (LR)) were established to discriminate RCC subtypes. The radiomics performance was compared with that of radiologist diagnosis. In the testing set, the RF model had an area under the curve (AUC) value of 0.909, a sensitivity of 0.956, and a specificity of 0.538. The SVM model had an AUC value of 0.841, a sensitivity of 1.0, and a specificity of 0.231, in the testing set. The LR model had an AUC value of 0.906, a sensitivity of 0.956, and a specificity of 0.692, in the testing set. The sensitivity and specificity of radiologist diagnosis to differentiate ccRCC from non-ccRCC were 0.850 and 0.581, respectively, with the AUC value of the radiologist diagnosis as 0.69. In conclusion, radiomics models based on CT imaging data show promise for augmenting radiological diagnosis in renal cancer, especially for differentiating ccRCC from non-ccRCC.
Colorectal cancer is one common digestive malignancy, and the most common approach of blood metastasis of colorectal cancer is through the portal vein system to the liver. Early detection and treatment of liver metastasis is the key to improving the prognosis of the patients. Radiomics and radiogenomics use non-invasive methods to evaluate the biological properties of tumors by deeply mining the texture features of images and quantifying the heterogeneity of metastatic tumors. Radiomics and radiogenomics have been applied widely in the detection, treatment, and prognostic evaluation of colorectal cancer liver metastases. Based on the imaging features of the liver, this paper reviews the current application of radiomics and radiogenomics in the diagnosis, treatment, monitor of disease progression, and prognosis of patients with colorectal cancer liver metastases.
OBJECTIVE: Diagnosis of tuberculosis (TB) in multi-slice spiral computed tomography (CT) images is a difficult task in many TB prevalent locations in which experienced radiologists are lacking. To address this difficulty, we develop an automated detection system based on artificial intelligence (AI) in this study to simplify the diagnostic process of active tuberculosis (ATB) and improve the diagnostic accuracy using CT images. DATA: A CT image dataset of 846 patients is retrospectively collected from a large teaching hospital. The gold standard for ATB patients is sputum smear, and the gold standard for normal and pneumonia patients is the CT report result. The dataset is divided into independent training and testing data subsets. The training data contains 337 ATB, 110 pneumonia, and 120 normal cases, while the testing data contains 139 ATB, 40 pneumonia, and 100 normal cases, respectively. METHODS: A U-Net deep learning algorithm was applied for automatic detection and segmentation of ATB lesions. Image processing methods are then applied to CT layers diagnosed as ATB lesions by U-Net, which can detect potentially misdiagnosed layers, and can turn 2D ATB lesions into 3D lesions based on consecutive U-Net annotations. Finally, independent test data is used to evaluate the performance of the developed AI tool. RESULTS: For an independent test, the AI tool yields an AUC value of 0.980. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value are 0.968, 0.964, 0.971, 0.971, and 0.964, respectively, which shows that the AI tool performs well for detection of ATB and differential diagnosis of non-ATB (i.e. pneumonia and normal cases). CONCLUSION: An AI tool for automatic detection of ATB in chest CT is successfully developed in this study. The AI tool can accurately detect ATB patients, and distinguish between ATB and non- ATB cases, which simplifies the diagnosis process and lays a solid foundation for the next step of AI in CT diagnosis of ATB in clinical application.
Abstract:The cherry tomatoes online sorting according to their maturity is an important procedure after harvest. This research proposed an automated cherry tomato grading system base on machine vision. Three images of different angles are obtained from each cherry tomato, allowing the inspection of approximately 90% of the fruit surface. 9 features were extracted from the one cherry tomato images. In order to distinguish into three grades (immature, half ripe and ripe), Principal component analysis (PCA) and linear discrimination analysis (LDA) were used to analyze the features. The PCA results show that ripe cherry tomatoes are distinguished from immature and half ripe ones. 414 cherry tomatoes were tested by the online sorting system. The overall accuracy was up to 94.9%. Furthermore, the grading speed of the sorting line reaches 7 cherry tomatoes per second which meet the actual demand of many farms.
PurposeThis study was to investigate the role of different radiomics models with enhanced computed tomography (CT) scan in differentiating low from high grade renal clear cell carcinomas.Materials and MethodsCT data of 190 cases with pathologically confirmed renal cell carcinomas were collected and divided into the training set and testing set according to different time periods, with 122 cases in the training set and 68 cases in the testing set. The region of interest (ROI) was delineated layer by layer.ResultsA total of 402 radiomics features were extracted for analysis. Six of the radiomic parameters were deemed very valuable by univariate analysis, rank sum test, LASSO cross validation and correlation analysis. From these six features, multivariate logistic regression model, support vector machine (SVM), and decision tree model were established for analysis. The performance of each model was evaluated by AUC value on the ROC curve and decision curve analysis (DCA). Among the three prediction models, the SVM model showed a high predictive efficiency. The AUC values of the training set and the testing set were 0.84 and 0.83, respectively, which were significantly higher than those of the decision tree model and the multivariate logistic regression model. The DCA revealed a better predictive performance in the SVM model that possessed the highest degree of coincidence.ConclusionRadiomics analysis using the SVM radiomics model has highly efficiency in discriminating high- and low-grade clear cell renal cell carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.