Background: The spread of rumors related to COVID-19 on social media has posed substantial challenges to public health governance, and thus exposing rumors and curbing their spread quickly and effectively has become an urgent task. This study aimed to assist in formulating effective strategies to debunk rumors and curb their spread on social media.Methods: A total of 2,053 original postings and 100,348 comments that replied to the postings of five false rumors related to COVID-19 (dated from January 20, 2020, to June 28, 2020) belonging to three categories, authoritative, social, and political, on Sina Weibo in China were randomly selected. To study the effectiveness of different debunking methods, a new annotation scheme was proposed that divides debunking methods into six categories: denial, further fact-checking, refutation, person response, organization response, and combination methods. Text classifiers using deep learning methods were built to automatically identify four user stances in comments that replied to debunking postings: supporting, denying, querying, and commenting stances. Then, based on stance responses, a debunking effectiveness index (DEI) was developed to measure the effectiveness of different debunking methods.Results: The refutation method with cited evidence has the best debunking effect, whether used alone or in combination with other debunking methods. For the social category of Car rumor and political category of Russia rumor, using the refutation method alone can achieve the optimal debunking effect. For authoritative rumors, a combination method has the optimal debunking effect, but the most effective combination method requires avoiding the use of a combination of a debunking method where the person or organization defamed by the authoritative rumor responds personally and the refutation method.Conclusion: The findings provide relevant insights into ways to debunk rumors effectively, support crisis management of false information, and take necessary actions in response to rumors amid public health emergencies.