Hypercholesterolemia is a risk factor to atherosclerosis and coronary heart disease II. The abnormal rise of cholesterol in plasma is the main symptom. Cholesterol synthesis pathway is an important pathway of the origin of cholesterol, which is an essential pathway for the therapy of hypercholesterolemia. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), squalene synthase (SQS), and sterol regulatory element binding protein-2 (SREBP-2) are closely connected with the synthesis of cholesterol. The inhibition of these targets can reduce the cholesterol in plasma. This study aimed to build a component formula including three Traditional Chinese Medicines (TCM) components with the inhibition activity of these targets by using virtual screening and biological network. Structure-based pharmacophore models of HMG-CoA reductase and SQS and ligand-based pharmacophore model of SREBP-2 were constructed to screen the Traditional Chinese Medicine Database (TCMD). Molecular docking was used for further screening of components of HMG-CoA reductase and SQS. Then, metabolic network was constructed to elucidate the comprehensive interaction of three targets for lipid metabolism. Finally, three potential active compounds were obtained, which are poncimarin, hexahydrocurcumin, and forsythoside C. The source plants of the compounds were also taken into account, which should have known action of lowering hyperlipidemia. The lipid-lowering effect of hexahydrocurcumin was verified by experiment in vitro. The components that originated from TCMs with lipid-lowering efficacy made up a formula with a synergistic effect through the computer aid drug design methods. The research provides a fast and efficient method to build TCM component formula and it may inspire the study of the explanation of TCM formula mechanism.
The metabotropic glutamate receptors (mGluRs) are known as both synaptic receptors and taste receptors. This feature is highly similar to the Property and Flavor theory of Traditional Chinese medicine (TCM), which has the pharmacological effect and flavor. In this study, six ligand based pharmacophore (LBP) models, seven homology modeling models, and fourteen molecular docking models of mGluRs were built based on orthosteric and allosteric sites to screening potential compounds from Traditional Chinese Medicine Database (TCMD). Based on the Pharmacopoeia of the People’s Republic of China, TCMs of compounds and their flavors were traced and listed. According to the tracing result, we found that the TCMs of the compounds which bound to orthosteric sites of mGluRs are highly correlated to a sweet flavor, while the allosteric site corresponds to a bitter flavor. Meanwhile, the pharmacological effects of TCMs with highly frequent flavors were further analyzed. We found that those TCMs play a neuroprotective role through the efficiencies of detumescence, promoting blood circulation, analgesic effect, and so on. This study provides a guide for developing new neuroprotective drugs from TCMs which target mGluRs. Moreover, it is the first study to present a novel approach to discuss the association relationship between flavor and the neuroprotective mechanism of TCM based on mGluRs.
Pharmacophore is a commonly used method for molecular simulation, including ligand-based pharmacophore (LBP) and structure-based pharmacophore (SBP). LBP can be utilized to identify active compounds usual with lower accuracy, and SBP is able to use for distinguishing active compounds from inactive compounds with frequently higher missing rates. Merged pharmacophore (MP) is presented to integrate advantages and avoid shortcomings of LBP and SBP. In this work, LBP and SBP models were constructed for the study of peroxisome proliferator receptor-alpha (PPARα) agonists. According to the comparison of the two types of pharmacophore models, mainly and secondarily pharmacological features were identified. The weight and tolerance values of these pharmacological features were adjusted to construct MP models by single-factor explorations and orthogonal experimental design based on SBP model. Then, the reliability and screening efficiency of the best MP model were validated by three databases. The best MP model was utilized to compute PPARα activity of compounds from traditional Chinese medicine. The screening efficiency of MP model outperformed individual LBP or SBP model for PPARα agonists, and was similar to combinatorial screening of LBP and SBP. However, MP model might have an advantage over the combination of LBP and SBP in evaluating the activity of compounds and avoiding the inconsistent prediction of LBP and SBP, which would be beneficial to guide drug design and optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.