The paper proposes a Constrained Entity-Alignment F-Measure (CEAF) for evaluating coreference resolution. The metric is computed by aligning reference and system entities (or coreference chains) with the constraint that a system (reference) entity is aligned with at most one reference (system) entity. We show that the best alignment is a maximum bipartite matching problem which can be solved by the Kuhn-Munkres algorithm. Comparative experiments are conducted to show that the widelyknown MUC F-measure has serious flaws in evaluating a coreference system. The proposed metric is also compared with the ACE-Value, the official evaluation metric in the Automatic Content Extraction (ACE) task, and we conclude that the proposed metric possesses some properties such as symmetry and better interpretability missing in the ACE-Value.
This paper proposes a new approach for coreference resolution which uses the Bell tree to represent the search space and casts the coreference resolution problem as finding the best path from the root of the Bell tree to the leaf nodes. A Maximum Entropy model is used to rank these paths. The coreference performance on the 2002 and 2003 Automatic Content Extraction (ACE) data will be reported. We also train a coreference system using the MUC6 data and competitive results are obtained.
Classification of high dimensional data finds wide-ranging applications. In many of these applications equipping the resulting classification with a measure of uncertainty may be as important as the classification itself. In this paper we introduce, develop algorithms for, and investigate the properties of, a variety of Bayesian models for the task of binary classification; via the posterior distribution on the classification labels, these methods automatically give measures of uncertainty. The methods are all based around the graph formulation of semi-supervised learning. We provide a unified framework which brings together a variety of methods which have been introduced in different communities within the mathematical sciences. We study probit classification [43], generalize the level-set method for Bayesian inverse problems [24] to the classification setting, and generalize the Ginzburg-Landau optimization-based classifier [5, 40] to a Bayesian setting; we also show that the probit and level set approaches are natural relaxations of the harmonic function approach introduced in [49]. We introduce efficient numerical methods, suited to large data-sets, for both MCMC-based sampling as well as gradient-based MAP estimation. Through numerical experiments we study classification accuracy and uncertainty quantification for our models; these experiments showcase a suite of datasets commonly used to evaluate graph-based semi-supervised learning algorithms.
Entity detection and tracking is a relatively new addition to the repertoire of natural language tasks. In this paper, we present a statistical language-independent framework for identifying and tracking named, nominal and pronominal references to entities within unrestricted text documents, and chaining them into clusters corresponding to each logical entity present in the text. Both the mention detection model and the novel entity tracking model can use arbitrary feature types, being able to integrate a wide array of lexical, syntactic and semantic features. In addition, the mention detection model crucially uses feature streams derived from different named entity classifiers. The proposed framework is evaluated with several experiments run in Arabic, Chinese and English texts; a system based on the approach described here and submitted to the latest Automatic Content Extraction (ACE) evaluation achieved top-tier results in all three evaluation languages.
It is necessary to have a (large) annotated corpus to build a statistical parser. Acquisition of such a corpus is costly and time-consuming. This paper presents a method to reduce this demand using active learning, which selects what samples to annotate, instead of annotating blindly the whole training corpus.Sample selection for annotation is based upon "representativeness" and "usefulness".A model-based distance is proposed to measure the difference of two sentences and their most likely parse trees. Based on this distance, the active learning process analyzes the sample distribution by clustering and calculates the density of each sample to quantify its representativeness. Further more, a sentence is deemed as useful if the existing model is highly uncertain about its parses, where uncertainty is measured by various entropy-based scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.