Coal gangue (CG) represents a huge amount of industrial solid waste in China, and usually is used as a coarse aggregate to produce low-strength coal-gangue-based concrete. In this paper, in order to prove the possibility to obtain a higher-strength concrete with a higher CG utilization rate, reactive powder concrete (RPC) with coal gangue as a sand replacement at different replacement ratios was studied. RPC samples were prepared by replacing natural river sand (RS) with CG sand at different CG/RS weight ratios from 0–100% at intervals of 25%. Mechanical tests were carried out, and the microstructure features of RPC samples at 28 days were characterized. The test results showed that strong back shrinkage of strength existed. On days 7 and 14, the flexural strengths of samples with CG/RS replacement ratios of 0–75% fluctuated around the mean value. Strengths of samples with a CG/RS replacement ratio of 100% dropped off. However, on day 28, the flexural strengths of samples with CG were all lower than the strengths of samples on days 7 and 14. The flexural strengths and compressive strengths of the RPC with a CG/RS replacement ratio of 100% on day 14 were 14.09 MPa and 37.03 MPa, respectively, which decreased to 6.42 MPa and 28.44 MPa, respectively, on day 28. Compared with natural river sand, CG sand reduced the working performance, compressive strength, and flexural strength of RPC. Microscopic analysis showed that on day 28, increasing the CG replacement ratio could inhibit cement hydration, weaken the interface transition zone, and lead to the degradation of the RPC’s performance. Modification of CG sand would be helpful to obtain higher-strength concrete.
Aiming to provide key materials in order to improve the fracture toughness of ZrB2 ceramics, ZrB2-SiC composite powders with in situ grown SiC whiskers were successfully synthesized via a simple molten-salt-assisted ferrous-catalyzed carbothermal reduction method. Thermodynamic calculations on the ZrO2-SiO2-B2O3-C-Fe system were carried out. The effects of heating temperature and ferrous catalyst amount on the growth behavior of SiC whiskers in ZrB2-SiC composite powders were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The results showed that the aspect ratio of SiC whiskers and the relative content of ZrB2 particles increased with increasing heating temperature (1523–1723 K) and a molar ratio of Fe to ZrSiO4 from 0:1 to 0.2:1. Phase-pure ZrB2-SiC composite powders were obtained at 1723 K when the molar ratio of raw materials was 0.2:0.5:1:1.5:8.4 (Fe:NaCl:ZrSiO4:B2O3:C). Single crystalline β-SiC whiskers with a mean diameter of 0.15 μm and an aspect ratio of 70–120 were homogeneously distributed in the final composite powders. A molten-salt-assisted iron-catalyzed vapor–solid mechanism was promoted for the growth mechanism of in situ grown SiC whiskers.
Coal gasification coarse slag (CGCS) is a by-product of coal gasification. Despite its abundance, CGCS is mostly used in boiler blending, stacking, and landfill. Large-scale industrial applications of CGCS can be environment-friendly and cost saving. In this study, the application of CGCS as a substitute for river sand (RS) with different replacement ratios in ultra-high performance concrete (UHPC) was investigated. The effects of CGCS replacement ratios on the fluidity and mechanical properties of specimens were examined, and the effect mechanisms were explored on the basis of hydration products and the multi-scale (millimetre-scale and micrometre-scale) microstructure analysis obtained through X-ray diffraction (XRD), scanning electron microscopy, and X-ray energy-dispersive spectroscopy. With an increase in the CGCS replacement ratio, the water–binder ratio (w/b), flexural strength, and compressive strength decreased. Specimens containing CGCS of ≤25% can satisfy the strength requirement of non-structural UHPC, with flexure strength of 29 MPa and compressive strength of 111 MPa at day 28. According to the XRD results and multi-scale microstructure analysis, amorphous glass beads in CGCS positively influenced ettringite generation due to the pozzolanic activity. Porous carbon particles in CGCS showed strong interfacial bonding with cement slurry due to internal hydration; this bonding was conducive to improving the mechanical strength. However, CGCS hindered hydration in the later curing stage, leading to an increase in the unreacted cement and agglomeration of fly ash; in addition, at a CGCS replacement ratio of up to 50%, an apparent interfacial transition zone structure was observed, which was the main contributor to mechanical strength deterioration.
This study is aimed to synthesize ZrB2–SiC composite powders by boro-carbothermal reduction of zircon using two different carbon sources, namely expanded graphite and carbon black. The effect of carbon sources on the phase composition and microstructure of composite powders was studied using an X-ray diffractometer, a scanning electron microscope, and an energy spectrum analyzer. Pure-phase ZrB2–SiC composite powders were prepared in 2 h at 1550 and 1500 °C 1500 °C using expanded graphite and carbon black, respectively. In the former case, anisotropic ZrB2–SiC composite powders were synthesized. Their ZrB2phase grains had an average diameter of 2.0 μm and regular hexagonal shape, while SiC phase grains were whisker-shaped, had an average diameter of 0.15 μm and aspect ratio exceeding 20. For carbon black, finer ZrB2grains and shorter rod-shaped SiC grains were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.