Edited by Robert BaroukiKeywords: SREBP-1c promoter FoxO1 LXRa Insulin a b s t r a c t Recent studies have demonstrated that FoxO1 modulates the expression of SREBP-1c, but the exact mechanism remains unknown. Our results demonstrate that FoxO1 suppresses the SREBP-1c promoter transcriptional activity in HepG2 cells. This repression was independent of FoxO1 binding to the SREBP-1c promoter, but LXR responsive elements (LXREs) were crucial to this phenomenon. Moreover, FoxO1 also strongly inhibited the LXRa-mediated elevated transcription by SREBP-1c promoter. Electrophoretic mobility shift assay and chromatin immuno-precipitation further suggested the ability of FoxO1 to inhibit LXRa binding with the LXRE in the SREBP-c promoter. FoxO1-mediated suppression of SREBP-1c promoter activity could be partially alleviated by insulin.
This paper focuses on the dynamic internal flow in the integrated aggressive intermediate turbine duct (AITD) with different HPT wake numbers, using CFX Solver with dynamic Reynolds-averaged Navier–Stokes equations (RANS), the shear stress transmission κ-ω turbulence model (SST) and the γ-θ transition model. The HPT wakes are simulated using sweeping rods, with the number of rods ranging from 14 to 56 and a reduced frequency of 1.07. The increasing wake number reduces the radial pressure gradient in the integrated AITD, and then decelerates the radial migration and dissipation of wake vortices, so that some residual wakes can reach the integrated low-pressure turbine guide vane (LPT-GV) to enhance the suppression of flow separation to a certain extent. On the other hand, the increase in wake number can also weaken the skewness and stretching of the wake, thereby increasing the duration of flow separation suppression. When there are too many wakes, the mixing between adjacent wakes accelerates the dispersion of wake vortices, leading to increased total pressure loss and an enhanced turbulence intensity. This enhanced turbulence intensity promotes bypass transition on the suction surface of the LPT-GV in advance, thereby completely eliminating flow separation on the LPT-GV in the entire spatiotemporal domain, which is beneficial for reducing separation loss, but also increasing turbulent viscous loss. When N ≤ 28, the gross loss of the integrated AITD studied in this paper reaches a minimum value (around 0.22), as the benefits brought by the wake suppression of flow separation can offset the wake dissipation loss and the turbulent viscous loss caused by the wake-induced transition. Considering that wake loss is inherently present, using sweeping wakes to inhibit the flow separation on the integrated LPT-GV can bring certain aerodynamic benefits when the wake number is less than 28.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.