Abstract. Model checking is a formal technique for automatically verifying that a finite-state model satisfies a temporal property. In model checking, generally Binary Decision Diagrams (BDDs) are used to efficiently encode the transition relation of the finite-state model. Recently model checking algorithms based on Boolean satisfiability (SAT) procedures have been developed to complement the traditional BDD-based model checking. These algorithms can be broadly classified into three categories: (1) bounded model checking which is useful for finding failures (2) hybrid algorithms that combine SAT and BDD based methods for unbounded model checking, and (3) purely SAT-based unbounded model checking algorithms. The goal of this paper is to provide a uniform and comprehensive basis for evaluating these algorithms. The paper describes eight bounded and unbounded techniques, and analyzes the performance of these algorithms on a large and diverse set of hardware benchmarks.
The i-protocol, an optimized sliding-window protocol for GNU UUCP, came to our attention two years ago when we used the Concurrency Factory's local model checker to detect, locate, and correct a non-trivial livelock in version 1.04 of the protocol. Since then, we have repeated this verification effort with five widely used model checkers, namely, COSPAN, Murϕ, SMV, Spin, and XMC. It is our contention that the i-protocol makes for a particularly compelling case study in protocol verification and for a formidable benchmark of verification-tool performance, for the following reasons: 1) The i-protocol can be used to gauge a tool's ability to detect and diagnose livelock errors. 2) The size of the i-protocol's state space grows exponentially in the window size, and the entirety of this state space must be searched to verify that the protocol, with the livelock error eliminated, is deadlock-or livelock-free. 3) The i-protocol is an asynchronous, low-level software system equipped with a number of optimizations aimed at minimizing control-message and retransmission overhead. It lacks the regular structure that is often present in hardware designs. In this sense, it provides any verification tool with a vigorous test of its analysis capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.