Ochratoxins A, B, and C (OTA, OTB, and OTC) can be found in cereals and feeds; the simultaneous detection of these ochratoxins holds a great need in food safety. In this study, four antibodies raised from two ochrotoxin haptens and two coating antigens were compared, and then a sensitive and broad-specificity enzyme-linked immunosorbent assay (ELISA) was established for the simultaneous determination of three ochratoxins, where the detection limits were 0.005, 0.001, and 0.001 ng/mL for OTA, OTB, and OTC, respectively, and recoveries of three ochratoxins were between 84.3% and 111.7%. This developed method had been successfully applied to detect ochratoxins in both millet and maize. Molecular modeling revealed that the broad-specificity was related with the chlorine electronegativity on OTA and OTC and the potential of the acetyl ester group on OTC. The proposed ELISA can be used for simultaneous detection of three ochratoxins.
Food fraud is currently a growing global concern with far-reaching consequences. Food authenticity attributes, including biological identity, geographical origin, agricultural production, and processing technology, are susceptible to food fraud. Metabolic markers and their corresponding authentication methods are considered as a promising choice for food authentication. However, few metabolic markers were available to develop robust analytical methods for food authentication in routine control. Untargeted metabolomics by liquid chromatography-mass spectrometry (LC-MS) is increasingly used to discover metabolic markers. This review summarizes the general workflow, recent applications, advantages, advances, limitations, and future needs of untargeted metabolomics by LC-MS for identifying metabolic markers in food authentication. In conclusion, untargeted metabolomics by LC-MS shows great efficiency to discover the metabolic markers for the authenticity assessment of biological identity, geographical origin, agricultural production, processing technology, freshness, cause of animals' death, and so on, through three main steps, namely, data acquisition, biomarker discovery, and biomarker validation. The applica-
The aim of this work was to evaluate the main nutrients and their antioxidant properties of a Chinese wild edible fruit, Passiflora foetida, collected from the ecoregion of Hainan province, China. The analytical results revealed that P. foetida fruits were rich in amino acids (1097 mg/100 g in total), minerals (595.75 mg/100 g in total), and unsaturated fatty acids (74.18 g/100 g in total fat). The lyophilized powder of edible portion contained the higher polyphenols content than the inedible portion powder. The UPLC-Q-TOF-MSE analysis of the extractable and non-extractable phenolics indicated the presence of 65 compounds including 39 free phenolics, 14 insoluble-glycoside-phenolics, and 22 insoluble-ester-phenolics. In addition, the non-extractable phenolics obtained by alkali hydrolysis showed significant antioxidant activities by/through DPPH and ABTS radical scavenging. These findings of P. foetida fruits, for the first time, suggest that these polyphenol-rich fruits may have potential nutraceutical efficacies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.