AF in humans leads to important changes in atrial potassium and calcium currents that likely contribute to the decrease in APD and APD rate adaptation. These changes contribute to electrical remodeling in AF and are therefore important factors for the perpetuation of the arrhythmia.
The Bcl-2 family of proteins are key regulators of apoptosis. Bcl-xL, is an anti-apoptotic protein with a high degree of homology to Bcl-2; however, the signals that regulate Bcl-xL and Bcl-2 appear to be different. Levels of Bcl-xL, but not Bcl-2, are increased in response to various survival signals. Furthermore, an inverse correlation between the levels of Bcl-2 and Bcl-xL has been reported for a number of cancers. Although the precise molecules that control Bcl-xL activity are unclear, the STAT, Rel/NF-kappaB, and Ets transcription factor families have recently been reported to directly regulate the bcl-x gene. Activated Ras, integrin, vitronectin, and hepatocyte growth factor signaling cascades have also been linked to changes in Bcl-xL expression. Bcl-xL can also be affected by post-translational mechanisms. Here we review recent advances in identifying the signaling pathways and factors involved in regulation of the bcl-x gene.
Synthetic peptides to selected sequences in human DNA polymerase delta (pol delta) were used to identify the region involved in the interaction of pol delta to proliferating cell nuclear antigen. Peptides corresponding to sequences in five regions in the amino terminus of human pol delta and three in the carboxyl terminus, which are conserved with the yeast homologs of pol delta, were tested. These studies showed that the peptide corresponding to the N2 region (residues 129-149) selectively and specifically inhibited the PCNA stimulation of pol delta. This inhibition was relieved by titration with excess PCNA. The identification of the N-2 region as being involved in PCNA binding was supported by studies that demonstrated that the N2 peptide could bind PCNA. Deletion mutants of pol delta expressed in Sf9 cells provided evidence that the binding region for PCNA was located in the first 182 residues of the amino terminus. These studies provide reasonable evidence that residues within the region 129-149 of pol delta are involved in the binding site for PCNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.