Pneumolysin is one of the major virulence factors elaborated by Streptococcus pneumoniae; this toxin is a member of the cholesterol-dependent cytolysins. Engagement of cholesterol induces the formation of a multi-subunit complex by pneumolysin that lyses host cells by forming pores on the membrane. Because pneumolysin released by bacteria which have been killed by conventional antibiotics is still active, agents capable of directly attacking the toxin are considered advantageous against antimicrobials in the treatment of S. pneumoniae infections. Here we found that the phytosterol, β-sitosterol, effectively protects against cell lysis caused by pneumolysin. This compound interacts with the toxin at Thr459 and Leu460, two sites important for being recognized by its natural ligand, cholesterol. Similar to cholesterol, β-sitosterol induces pneumolysin oligomerization. This compound also protects cells from damage by other cholesterol-dependent toxins. Finally, this compound protects mice against S. pneumoniae infection. Thus, β-sitosterol is a candidate for the development of anti-virulence agents against pathogens that rely on cholesterol-dependent toxins for successful infections.
Pneumolysin (PLY), an essential virulence factor of Streptococcus pneumoniae (pneumococcus), can penetrate the physical defenses of the host and possesses inflammatory properties. The vital role PLY plays in pneumococcus pathogenesis makes this virulence factor one of the most promising targets for the treatment of pneumococcal infection. Verbascoside (VBS) is an agent that does not exhibit bacteriostatic activity but has been shown to inhibit PLY-mediated cytotoxicity. The results from molecular dynamics simulations and mutational analysis indicated that VBS binds to the cleft between domains 3 and 4 of PLY, thereby blocking PLY's oligomerization and counteracting its hemolytic activity. Moreover, VBS can effectively alleviate PLY-mediated human alveolar epithelial (A549) cell injury, and treatment with VBS provides significant protection against lung damage and reduces mortality in a pneumococcal pneumonia murine model. Our results demonstrate that VBS is a strong candidate as a novel therapeutic in the treatment of Streptococcus pneumoniae infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.