The use of future contextual information is typically shown to be helpful for acoustic modeling. However, for the recurrent neural network (RNN), it's not so easy to model the future temporal context effectively, meanwhile keep lower model latency.In this paper, we attempt to design a RNN acoustic model that being capable of utilizing the future context effectively and directly, with the model latency and computation cost as low as possible. The proposed model is based on the minimal gated recurrent unit (mGRU) with an input projection layer inserted in it. Two context modules, temporal encoding and temporal convolution, are specifically designed for this architecture to model the future context. Experimental results on the Switchboard task and an internal Mandarin ASR task show that, the proposed model performs much better than long short-term memory (LSTM) and mGRU models, whereas enables online decoding with a maximum latency of 170 ms. This model even outperforms a very strong baseline, TDNN-LSTM, with smaller model latency and almost half less parameters.
Model predictive control (MPC) has drawn a considerable amount of attention in automotive applications during the last decade, partially due to its systematic capacity of treating system constraints. Even though having received broad acknowledgements, there still exist two intrinsic shortcomings on this optimization-based control strategy, namely the extensive online calculation burden and the complex tuning process, which hinder MPC from being applied to a wider extent. To tackle these two drawbacks, different methods were proposed. Nevertheless, the majority of these approaches treat these two issues independently. However, parameter tuning in fact has double-sided effects on both the controller performance and the real-time computational burden. Due to the lack of theoretical tools for globally analyzing the complex conflicts among MPC parameter tuning, controller performance optimization, and computational burden easement, a look-up table-based online parameter selection method is proposed in this paper to help a vehicle track its reference path under both the stability and computational capacity constraints. matlab-carsim conjoint simulations show the effectiveness of the proposed strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.