We study the boundary stabilization of laminated beams with structural damping which describes the slip occurring at the interface of two-layered objects. By using an invertible matrix function with an eigenvalue parameter and an asymptotic technique for the first order matrix differential equation, we find out an explicit asymptotic formula for the matrix fundamental solutions and then carry out the asymptotic analyses for the eigenpairs. Furthermore, we prove that there is a sequence of generalized eigenfunctions that forms a Riesz basis in the state Hilbert space, and hence the spectrum determined growth condition holds. Furthermore, exponential stability of the closed-loop system can be deduced from the eigenvalue expressions. In particular, the semigroup generated by the system operator is a C 0-group due to the fact that the three asymptotes of the spectrum are parallel to the imaginary axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.