The pinning synchronization problem for a class of complex networks is studied by a stochastic viewpoint, in which both timevarying coupling strength and nondelayed and delayed coupling are included. Different from the traditionally similar methods, its interval is separated into two subintervals and described by a Bernoulli variable. Both bounds and switching probability of such subintervals are contained. Particularly, the nondelayed and delayed couplings occur alternately in which another independent Bernoulli variable is introduced. Then, a new kind of pinning controller without time-varying coupling strength signal is developed, in which only its bounds and probabilities are contained. When such probabilities are unavailable, two different kinds of adaption laws are established to make the complex network globally synchronous. Finally, the validity of the presented methods is proved through a numerical example.