Bone marrow stromal cells (MSCs) improve neurologic recovery after middle cerebral artery occlusion (MCAo). To examine whether in vivo blockage of the endogenous sonic hedgehog (Shh) pathway affects grafted MSC-induced neurologic benefits, MCAo mice were administered: vehicle (control); cyclopamine (CP)— a specific Shh pathway inhibitor; MSC; and MSC and cyclopamine (MSC-CP). Neurologic function was evaluated after MCAo. Electron microscopy and immunofluorescence staining were employed to measure synapse density, protein expression of tissue plasminogen activator (tPA), and Shh in parenchymal cells in the ischemic boundary zone (IBZ), respectively. Marrow stromal cell treatment significantly enhanced functional recovery after ischemia, concurrent with increases of synaptophysin, synapse density, and myelinated axons along the IBZ, and significantly increased tPA and Shh expression in astrocytes and neurons compared with control. After treatment with MSC-CP or CP, the above effects were reversed. Co-culture of MSCs with cortical neurons confirmed the effect of Shh on MSC-mediated neurite outgrowth. Our data support the hypothesis that the Shh pathway mediates brain plasticity via tPA and thereby functional recovery after treatment of stroke with MSCs.
Background and Purpose
We sought to demonstrate the contribution of axonal remodeling of the corticospinal tract (CST) in the spinal cord to functional outcome after stroke.
Methods
Bilateral pyramidotomy (BPT) or sham-BPT was performed in mice with transgenic yellow fluorescent protein labeling in the CST subjected to middle cerebral artery occlusion (MCAo). Foot-fault and single pellet reaching tests were performed 3 days after MCAo and weekly thereafter. Mice were euthanized at day 14 or 28 after stroke. Immunofluorescent staining for growth-associated protein-43 and Synaptophysin was performed on cervical sections.
Results
Functional improvements were evident during the initial 14 days in both MCAo-sham-BPT and MCAo-BPT mice (P<0.01, versus day 3). Progressive recovery was present during the subsequent 14 days in MCAo-sham-BPT mice (P<0.001, versus day 14) but not in MCAo-BPT mice. In the stroke-affected cervical gray matter of MCAo-sham-BPT mice, growth-associated protein-43-Cy3 staining on CST axons were significantly increased at day 14 after stroke compared with normal mice (P<0.001), and CST axonal density and Synaptophysin-Cy3 staining of CST-yellow fluorescent protein axonal terminals were significantly increased at day 28 compared with day 14 after MCAo (P<0.001).
Conclusions
Our data demonstrate that voluntary motor recovery is associated with CST axonal outgrowth and synaptic formation in the denervated side of the spinal gray matter during the later phase after stroke, suggesting that the CST axonal plasticity in the spinal cord contributes to neurological recovery.
Stroke induced white matter (WM) damage is associated with neurological functional deficits, but the underlying mechanisms are not well understood. In this study, we investigate whether endothelial nitric oxide synthase (eNOS) affects WM-damage post-stroke. Adult male wild-type (WT) and eNOS knockout (eNOS-/-) mice were subjected to middle cerebral artery occlusion. Functional evaluation, infarct volume measurement, immunostaining and primary cortical cell culture were performed. To obtain insight into the mechanisms underlying the effects of eNOS-/- on WM-damage, measurement of eNOS, brain-derived neurotrophic factor (BDNF) and its receptor TrkB in vivo and in vitro were also performed. No significant differences were detected in the infarction volume, myelin density in the ipsilateral striatal WM-bundles and myelin-based protein expression in the cerebral ischemic border between WT and eNOS-/- mice. However, eNOS-/- mice showed significantly: 1) decreased functional outcome, concurrent with decreases of total axon density and phosphorylated high-molecular weight neurofilament density in the ipsilateral striatal WM-bundles. Correlation analysis showed that axon density is significantly positive correlated with neurological functional outcome; 2) decreased numbers of oligodendrocytes / oligodendrocyte progenitor cells in the ipsilateral striatum; 3) decreased synaptophysin, BDNF and TrkB expression in the ischemic border compared with WT mice after stroke (n = 12/group, p<0.05). Primary cortical cell culture confirmed that the decrease of neuronal neurite outgrowth in the neurons derived from eNOS-/- mice is mediated by the reduction of BDNF/TrkB (n = 6/group, p<0.05). Our data show that eNOS plays a critical role in WM-damage after stroke, and eNOS-/--induced decreases in the BDNF/TrkB pathway may contribute to increased WM-damage, and thereby decrease functional outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.