The COVID-19 coronavirus has spread rapidly around the world and has caused global panic. Chest CT images play a major role in confirming positive COVID-19 patients. The computer aided diagnosis of COVID-19 from CT images based on artificial intelligence have been developed and deployed in some hospitals. But environmental influences and the movement of lung will affect the image quality, causing the lung parenchyma and pneumonia area unclear in CT images. Therefore, the performance of COVID-19’s artificial intelligence diagnostic algorithm is reduced. If chest CT images are reconstructed, the accuracy and performance of the aided diagnostic algorithm may be improved. In this paper, a new aided diagnostic algorithm for COVID-19 based on super-resolution reconstructed images and convolutional neural network is presented. Firstly, the SRGAN neural network is used to reconstruct super-resolution images from original chest CT images. Then COVID-19 images and Non-COVID-19 images are classified from super-resolution chest CT images by VGG16 neural network. Finally, the performance of this method is verified by the pubic COVID-CT dataset and compared with other aided diagnosis methods of COVID-19. The experimental results show that improving the data quality through SRGAN neural network can greatly improve the final classification accuracy when the data quality is low. This proves that this method can obtain high accuracy, sensitivity and specificity in the examined test image datasets and has similar performance to other state-of-the-art deep learning aided algorithms.
Novel coronavirus pneumonia (NCP) has become a global pandemic disease, and computed tomography-based (CT) image analysis and recognition are one of the important tools for clinical diagnosis. In order to assist medical personnel to achieve an efficient and fast diagnosis of patients with new coronavirus pneumonia, this paper proposes an assisted diagnosis algorithm based on ensemble deep learning. The method combines the Stacked Generalization ensemble learning with the VGG16 deep learning to form a cascade classifier, and the information constituting the cascade classifier comes from multiple subsets of the training set, each of which is used to collect deviant information about the generalization behavior of the data set, such that this deviant information fills the cascade classifier. The algorithm was experimentally validated for classifying patients with novel coronavirus pneumonia, patients with common pneumonia (CP), and normal controls, and the algorithm achieved a prediction accuracy of 93.57%, sensitivity of 94.21%, specificity of 93.93%, precision of 89.40%, and F1-score of 91.74% for the three categories. The results show that the method proposed in this paper has good classification performance and can significantly improve the performance of deep neural networks for multicategory prediction tasks.
Precise segmentation of lung parenchyma is essential for effective analysis of the lung. Due to the obvious contrast and large regional area compared to other tissues in the chest, lung tissue is less difficult to segment. Special attention to details of lung segmentation is also needed. To improve the quality and speed of segmentation of lung parenchyma based on computed tomography (CT) or computed tomography angiography (CTA) images, the 4th International Symposium on Image Computing and Digital Medicine (ISICDM 2020) provides interesting and valuable research ideas and approaches. For the work of lung parenchyma segmentation, 9 of the 12 participating teams used the U-Net network or its modified forms, and others used the methods to improve the segmentation accuracy include attention mechanism, multi-scale feature information fusion. Among them, U-Net achieves the best results including that the final dice coefficient of CT segmentation is 0.991 and the final dice coefficient of CTA segmentation is 0.984. In addition, attention U-Net and nnU-Net network also performs well. In this review paper, the methods chosen by 12 teams from different research groups are evaluated and their segmentation results are analyzed for the study and references to those involved.
BACKGROUND: The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research. PURPOSE: Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances. METHODS: First, we present the annotated reference dataset of lung CT and CTA images. A subset of the dataset consisting 7,307 slices for training and 3,888 slices for testing was made available for participants. Second, by analyzing the performance comparison of different convolutional neural networks from 12 different institutions for pulmonary vascular segmentation, the reasons for some defects and improvements are summarized. The models are mainly based on U-Net, Attention, GAN, and multi-scale fusion network. The performance is measured in terms of Dice coefficient, over segmentation rate and under segmentation rate. Finally, we discuss several proposed methods to improve the pulmonary vessel segmentation results using deep neural networks. RESULTS: By comparing with the annotated ground truth from both lung CT and CTA images, most of 12 deep neural network algorithms do an admirable job in pulmonary vascular extraction and segmentation with the dice coefficients ranging from 0.70 to 0.85. The dice coefficients for the top three algorithms are about 0.80. CONCLUSIONS: Study results show that integrating methods that consider spatial information, fuse multi-scale feature map, or have an excellent post-processing to deep neural network training and optimization process are significant for further improving the accuracy of pulmonary vascular segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.