The development of dendritic spines is thought to be crucial for synaptic plasticity.Dendritic spines are retracted upon EphA4 activation, but the mechanisms that control this process are not well understood. Here we report an important role of Cdk5 in EphA4-dependent spine retraction. We find that blockade of Cdk5 activity inhibits ephrin-A1-triggered spine retraction and reduction of mEPSC frequency at hippocampal synapses.Activation of EphA4 results in the recruitment of Cdk5 to EphA4, leading to the tyrosine phosphorylation and activation of Cdk5. EphA4 and Cdk5 then enhance the activation of ephexin1, a GEF that regulates RhoA activation. We show that the association between EphA4 and ephexin1 is significantly reduced in Cdk5 -/-brains and that Cdk5-dependent phosphorylation of ephexin1 is required for ephrin-A1-mediated regulation of spine density.These findings suggest that ephrin-A1 promotes EphA4-dependent spine retraction through the activation of Cdk5 and ephexin1 which in turn modulates actin cytoskeletal dynamics.3
We have previously demonstrated the cardioprotective effects of exosomes derived from mesenchymal stem cells (MSCs). It is well known that the activation of Akt is involved in stem cell‐induced cardioprotection. In the present study, we investigated whether exosomes released from Akt‐overexpressing MSCs showed a beneficial effect on cardioprotection and angiogenesis. MSCs were collected from human umbilical cord (hucMSCs), and Akt was transfected into hucMSCs (Akt‐hucMSCs) by using an adenovirus transfection system. Exosomes were isolated from control hucMSCs (Exo) and Akt‐hucMSCs (Akt‐Exo). An acute myocardial infarction model was created by ligation of the left anterior decedent coronary artery (LAD) in rats. Various source exosomes (400 µg of protein) were infused via the tail vein immediately after LAD ligation. The cardiac function was evaluated by using echocardiography after different treatments for 1 and 5 weeks, respectively. Endothelial cell proliferation, migration, and tube‐like structure formation, as well as chick allantoic membrane assay, were used to evaluate the angiogenetic effects of Akt‐Exo. The results indicated that cardiac function was significantly improved in the animals treated with Akt‐Exo. In addition, Akt‐Exo significantly accelerated endothelial cell proliferation and migration, tube‐like structure formation in vitro, and blood vessel formation in vivo. The expression of platelet‐derived growth factor D (PDGF‐D) was significantly upregulated in Akt‐Exo. However, the angiogenesis was abrogated in endothelial cells treated with the exosomes obtained from MSCs transfected with PDGF‐D‐siRNA. Our studies suggest that exosomes obtained from Akt‐modified hucMSCs are more effective in myocardial infarction therapy through promoting angiogenesis. PDGF‐D plays an important role in Akt‐Exo‐mediated angiogenesis. Stem Cells Translational Medicine 2017;6:51–59
Haploidentical hematopoietic stem cell transplantation (HSCT) offers the benefits of rapid and nearly universal donor availability and has been accepted worldwide as an alternative treatment for patients with hematologic malignancies who do not have a completely HLA-matched sibling or who require urgent transplantation. Unfortunately, serious infections and leukemia relapse resulting from slow immune reconstitution remain the 2 most frequent causes of mortality in patients undergoing haploidentical HSCT, particularly in those receiving extensively T cell-depleted megadose CD34(+) allografts. This review summarizes advances in immune recovery after haploidentical HSCT, focusing on the immune subsets likely to have the greatest impact on clinical outcomes. The progress made in accelerating immune reconstitution using different strategies after haploidentical HSCT is also discussed. It is our belief that a predictive immune subset-guided strategy to improve immune recovery might represent a future clinical direction.
Gut acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is associated with high mortality. Mucosa-associated invariant T (MAIT) cells are a group of innate-like T cells enriched in the intestine that can be activated by riboflavin metabolites from various microorganisms. However, little is known about the function or mechanism of action of MAIT cells in the occurrence of gut aGVHD in humans. In our study, multiparameter flow cytometry (FCM) was used to evaluate the number of MAIT cells and functional cytokines. 16S V34 region amplicon sequencing analysis was used to analyze the intestinal flora of transplant patients. In vitro stimulation and coculture assays were used to study the activation and function of MAIT cells. The number and distribution of MAIT cells in intestinal tissues were analyzed by immunofluorescence technology. Our study showed that the number and frequency of MAIT cells in infused grafts in gut aGVHD patients were lower than those in no-gut aGVHD patients. Recipients with a high number of MAITs in infused grafts had a higher abundance of intestinal flora in the early posttransplantation period (+14 days). At the onset of gut aGVHD, the number of MAIT cells decreased in peripheral blood, and the activation marker CD69, chemokine receptors CXCR3 and CXCR4, and transcription factors Rorγt and T-bet tended to increase. Furthermore, when gut aGVHD occurred, the proportion of MAIT17 was higher than that of MAIT1. The abundance of intestinal flora with non-riboflavin metabolic pathways tended to increase in gut aGVHD patients. MAIT cells secreted more granzyme B, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ under the interleukin (IL)-12/IL-18 stimulation [non-T-cell receptor (TCR) signal] and secreted most of the IL-17 under the cluster of differentiation (CD)3/CD28 stimulation (TCR signal). MAIT cells inhibited the proliferation of CD4+ T cells in vitro. In conclusion, the lower number of MAIT cells in infused grafts was related to the higher incidence of gut aGVHD, and the number of MAIT cells in grafts may affect the composition of the intestinal flora of recipients early after transplantation. The flora of the riboflavin metabolism pathway activated MAIT cells and promoted the expression of intestinal protective factors to affect the occurrence of gut aGVHD in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.