The laminate model of thin-walled triaxial weave fabric composites (hereinafter referred to as shell-membrane structure) to calculate the equivalent tensile Young’s modulus and bending stiffness is derived. Three-dimensional beam element finite element model of shell-membrane structure under different loading angles is established, and the tensile and bending properties of shell-membrane structure were simulated, respectively. Both results of laminate model and three-dimensional beam element finite element model verify the “size effect,” indicating that the shell-membrane structure can be equivalent to linear material in the small deformation range. And the shell-membrane structure exhibits an in-plane quasi-isotropic property. These two methods are convenient for the mechanical properties solving in engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.