Extracting features from sensing data on edge devices is a challenging application for which deep neural networks (DNN) have shown promising results. Unfortunately, the general micro-controller-class processors which are widely used in sensing system fail to achieve real-time inference. Accelerating the compute-intensive DNN inference is, therefore, of utmost importance. As the physical limitation of sensing devices, the design of processor needs to meet the balanced performance metrics, including low power consumption, low latency, and flexible configuration. In this paper, we proposed a lightweight pipeline integrated deep learning architecture, which is compatible with open-source RISC-V instructions. The dataflow of DNN is organized by the very long instruction word (VLIW) pipeline. It combines with the proposed special intelligent enhanced instructions and the single instruction multiple data (SIMD) parallel processing unit. Experimental results show that total power consumption is about 411 mw and the power efficiency is about 320.7 GOPS/W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.