Secure localization has become very important in wireless sensor networks. However, the conventional secure localization algorithms used in wireless sensor networks cannot deal with internal attacks and cannot identify malicious nodes. In this paper, a localization based on trust valuation, which can overcome a various attack types, such as spoofing attacks and Sybil attacks, is presented. The trust valuation is obtained via selection of the property set, which includes estimated distance, localization performance, position information of beacon nodes, and transmission time, and discussion of the threshold in the property set. In addition, the robustness of the proposed model is verified by analysis of attack intensity, localization error, and trust relationship for three typical scenes. The experimental results have shown that the proposed model is superior to the traditional secure localization models in terms of malicious nodes identification and performance improvement.
Wireless sensor networks have critical applications in various fields, and the algorithm of their secure localization has become a vital technology to support a network. In the light of the self-organization, random deployment and dynamic topology, the localization process is vulnerable to various kinds of malicious attacks. The model of dynamic trust management for a given node is proposed to deal with security concerns in wireless sensor networks. The trust computation is divided into three stages, which are the stage of trust initialization, trust establishment, and trust evolution. The initial value of a global trust relationship is established through a corresponding global trust relation graph in the initial stage of trust. The trust value of each node is calculated by the attribute value in the stage of trust establishment. In the evolution of trust, the iterative process of trust value is accelerated via the finite state machine. Compared with the existing wireless sensor networks, simulation results show that the proposed security localization technology method can resist many kinds of attacks with low communication and time consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.