We propose a non-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators drawn from the group αI, X, S , where α = e iπ/4 and S = diag(1, i). We provide techniques to efficiently compute various properties related to bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians etc. We also highlight significant differences compared to the Pauli stabilizer formalism. In particular, we give examples of states in our formalism which cannot arise in the Pauli stabilizer formalism, such as topological models that support non-Abelian anyons. arXiv:1404.5327v1 [quant-ph]
We utilize machine learning models which are based on recurrent neural networks to optimize dynamical decoupling (DD) sequences. DD is a relatively simple technique for suppressing the errors in quantum memory for certain noise models. In numerical simulations, we show that with minimum use of prior knowledge and starting from random sequences, the models are able to improve over time and eventually output DD-sequences with performance better than that of the well known DD-families. Furthermore, our algorithm is easy to implement in experiments to find solutions tailored to the specific hardware, as it treats the figure of merit as a black box.
Machine learning has the potential to become an important tool in quantum error correction as it allows the decoder to adapt to the error distribution of a quantum chip. An additional motivation for using neural networks is the fact that they can be evaluated by dedicated hardware which is very fast and consumes little power. Machine learning has been previously applied to decode the surface code. However, these approaches are not scalable as the training has to be redone for every system size which becomes increasingly difficult. In this work the existence of local decoders for higher dimensional codes leads us to use a low-depth convolutional neural network to locally assign a likelihood of error on each qubit. For noiseless syndrome measurements, numerical simulations show that the decoder has a threshold of around 7.1% when applied to the 4D toric code. When the syndrome measurements are noisy, the decoder performs better for larger code sizes when the error probability is low. We also give theoretical and numerical analysis to show how a convolutional neural network is different from the 1-nearest neighbor algorithm, which is a baseline machine learning method.
We develop an algorithmic framework for contracting tensor networks and demonstrate its power by classically simulating quantum computation of sizes previously deemed out of reach. Our main contribution, index slicing, is a method that efficiently parallelizes the contraction by breaking it down into much smaller and identically structured subtasks, which can then be executed in parallel without dependencies. We benchmark our algorithm on a class of random quantum circuits, achieving greater than 105 times acceleration over the original estimate of the simulation cost. We then demonstrate applications of the simulation framework for aiding the development of quantum algorithms and quantum error correction. As tensor networks are widely used in computational science, our simulation framework may find further applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.