In hyperspectral image classification, the foremost task is that: how can we apply limited labeled samples to achieve good classification results? Spatial-spectral classification methods, which assign a label to each pixel regarding both spatial and spectral information, are effective to improve classification performance. Moreover, semisupervised learning (SSL) focuses on the scenario that the number of labeled data is rather small while a large number of unlabeled data are available. To complement spatial-spectral classification methods and semisupervised learning for each other, we propose a novel learning landscape features semisupervised framework (LLFSF) based on M-training algorithm and weighted spatial-spectral double layer SVM classifiers module (WSS-DSVM). In this novel framework, we first propose a SLIC (simple linear iterative clustering) based non-local superpixel segmentation algorithm to initially learn landscape feature and spatial composition. Then, we apply WSS-DSVM module to obtain initial classification maps. To better characterize complex scenes of hyperspectral images, we quantizes both the landscape diversity and separability from the initial classification map, which increase availability of spatial details and structural information of objects. Finally, we put some patches with lower accuracy into Multiple-training algorithm for further classification. In order to achieve an unbiased evaluation, we have evaluated the performance of LLFSF on three different scene hyperspectral data sets and compare it with that of three state-of-the-art hyperspectral image classification methods. The experimental results confirm the efficacy of the proposed framework. INDEX TERMS Hyperspectral image classification, landscape features, spatial-spectral information, semisupervised learning.
When several foreign fighters with the same type enter detection range, the electronic warfare (EW) receivers will intercept many the same type radar emitter signals. If the intercepted pulse is processed by the traditional sorting methods, the number of emitters cannot be identified. The main reason is that the same type of radar has similar parameters. It will cause a devastating influence on subsequent strategic decisions. A novel sorting method based on the trajectory features is proposed to solve the aforementioned problems. First, the trajectory features of the intercepted pulse signal are extracted. Then, the segmentation method is utilized to preprocess the signals, which enhances the computing efficiency and improves the sorting accuracy. Meanwhile, a prediction framework based on long short-term memory (LSTM) recurrent neural network is established to forecast pulses. Finally, the radar stagger pulses are sorted by forecast pulses. The simulation results show that the proposed method can recognize the number of emitters and achieve high sorting accuracy. It provides a new idea for the radar signals sorting of the same type. INDEX TERMS Signal sorting, trajectory features, recurrent neural networks (RNNs), long short-term memory (LSTM).
Applying limited labeled samples to improve classification results is a challenge in hyperspectral images. Active Learning (AL) and Semisupervised Learning (SSL) are two promising techniques to achieve this challenge. Combining AL with SSL is an excellent idea for hyperspectral image classification. The traditional method, such as the Collaborative Active and Semisupervised Learning algorithm (CASSL), may introduce many incorrect pseudolabels and shows premature convergence. To overcome these drawbacks, a novel framework named Double-Strategy-Check Collaborative Active and Semisupervised Learning (DSC-CASSL) is proposed in this paper. This framework combines two different AL algorithms and SSL in a collaborative mode. The double-strategy verification can gradually improve the pseudolabeling accuracy and facilitate SSL. We evaluate the performance of DSC-CASSL on four hyperspectral data sets and compare it with that of four hyperspectral image classification methods. Our results suggest that DSC-CASSL leads to consistent improvement for hyperspectral image classification.
In a heterogeneous environment, the ionosphere is dynamically changing in the Earth’s middle latitude, and backscatter from fast-moving irregularities in the plasma can cause ionosphere clutter to extend. Suppressing varying ionosphere clutter and exploring obscured targets are challenging tasks for high frequency surface wave radar (HFSWR). For responding to these challenges, this research presents a multi-channel deep learning time–frequency feature filter framework (DL-TFF). Firstly, we observed the behavior of the ionosphere clutter for a long period of time before selecting the representative ionosphere clutter. Secondly, different transform techniques are applied to provide a time–frequency representation of the non-stationary echo signals, and representation results of different echo components are collected as a training set for feature learning. Thirdly, we design a multi-channel time–frequency feature learning network (MTF), which is responsible for mining discriminative time–frequency information between targets and different types of ionosphere clutter. Experimental results on real HFSWR data sets have demonstrated that DL-TFF can remove varying ionosphere clutter and simultaneously reveal covered targets. Moreover, its suppression effectiveness is more ideal than the previous classical method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.