BackgroundFatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-year-old men (n = 49) and women (n = 52) with and without NAFLD.MethodsHepatic fat content was measured using proton magnetic resonance spectroscopy (1H MRS). Serum samples were analyzed using a nuclear magnetic resonance (NMR) metabolomics platform. Global gene expression profiles of adipose tissues and skeletal muscle were analyzed using Affymetrix microarrays and quantitative PCR. Muscle protein expression was analyzed by Western blot.ResultsIncreased branched-chain amino acid (BCAA), aromatic amino acid (AAA) and orosomucoid were associated with liver fat accumulation already in its early stage, independent of sex, obesity or insulin resistance (p<0.05 for all). Significant down-regulation of BCAA catabolism and fatty acid and energy metabolism was observed in the adipose tissue of the NAFLD group (p<0.001for all), whereas no aberrant gene expression in the skeletal muscle was found. Reduced BCAA catabolic activity was inversely associated with serum BCAA and liver fat content (p<0.05 for all).ConclusionsLiver fat accumulation, already in its early stage, is associated with increased serum branched-chain and aromatic amino acids. The observed associations of decreased BCAA catabolism activity, mitochondrial energy metabolism and serum BCAA concentration with liver fat content suggest that adipose tissue dysfunction may have a key role in the systemic nature of NAFLD pathogenesis.
A B S T R A C TPurpose: Cross-sectional studies in children show branched-chain and aromatic amino acids are associated with insulin resistance, but whether these associations persist from childhood to adulthood is not known. This study aimed to assess whether circulating amino acids associate with insulin resistance during pubertal development. Methods: This was a 7.5-year longitudinal study from childhood to early adulthood. A total of 396 nondiabetic Finnish girls aged 11.2 AE .8 years at baseline participated in the study which was conducted at the Health Science Laboratory, University of Jyväskylä. Serum concentrations of glucose and insulin were determined by enzymatic photometric methods and amino acids by nuclear magnetic resonance spectroscopy. Insulin resistance was determined by the homeostatic model assessment of insulin resistance (HOMA-IR). Results: All amino acids were positively associated with HOMA-IR both before and after menarche (p < .05 for all), except for histidine. Branched-chain amino acids and aromatic amino acids showed the strongest associations, the magnitude of correlation coefficients being similar before and after menarche (R 2 ¼ .064e.171). After adjusting for body mass index z-score and height, the associations between branched-chain amino acids and aromatic amino acids and HOMA-IR remained significant both before and after menarche. Conclusions: Branched-chain amino acids and aromatic amino acids associate with insulin resistance during pubertal development, independent of adiposity. Further studies are needed to determine whether changes in amino acid metabolism link pubertal hyperinsulinemia to accelerated physiological growth and/or heightened cardiometabolic risk later in life.
Background: Cardiovascular diseases may originate in childhood. Biomarkers identifying individuals with increased risk for disease are needed to support early detection and to optimise prevention strategies. Methods: In this prospective study, by applying a machine learning to high throughput NMR-based metabolomics data, we identified circulating childhood metabolic predictors of adult cardiovascular disease risk (MetS score) in a cohort of 396 females, followed from childhood (mean age 11¢2 years) to early adulthood (mean age 18¢1 years). The results obtained from the discovery cohort were validated in a large longitudinal birth cohort of females and males followed from puberty to adulthood (n = 2664) and in four cross-sectional data sets (n = 6341). Findings: The identified childhood metabolic signature included three circulating biomarkers, glycoprotein acetyls (GlycA), large high-density lipoprotein phospholipids (L-HDL-PL), and the ratio of apolipoprotein B to apolipoprotein A-1 (ApoB/ApoA) that were associated with increased cardio-metabolic risk in early adulthood (AUC = 0¢641-0¢802, all p<0¢01). These associations were confirmed in all validation cohorts with similar effect estimates both in females (AUC = 0¢667-0¢905, all p<0¢01) and males (AUC = 0¢734-0¢889, all p<0¢01) as well as in elderly patients with and without type 2 diabetes (AUC = 0¢517-0¢700, all p<0¢01). We subsequently applied random intercept cross-lagged panel model analysis, which suggested bidirectional causal relationship between metabolic biomarkers and cardio-metabolic risk score from childhood to early adulthood. Interpretation: These results provide evidence for the utility of a circulating metabolomics panel to identify children and adolescents at risk for future cardiovascular disease, to whom preventive measures and followup could be indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.