Organic–inorganic lead halide perovskite materials have recently attracted much attention in the field of optoelectronic devices. Here, a hybrid piezoelectric nanogenerator based on a composite of piezoelectric formamidinium lead halide perovskite (FAPbBr3) nanoparticles and polydimethylsiloxane polymer is fabricated. Piezoresponse force spectroscopy measurements reveal that the FAPbBr3 nanoparticles contain well‐developed ferroelectric properties with high piezoelectric charge coefficient (d33) of 25 pmV−1. The flexible device exhibits high performance with a maximum recordable piezoelectric output voltage of 8.5 V and current density of 3.8 μA cm−2 under periodically vertical compression and release operations. The alternating energy generated from nanogenerators can be used to charge a capacitor and light up a red light‐emitting diode through a bridge rectifier. This result innovatively expands the feasibility of organic–inorganic lead halide perovskite materials for application in a wide variety of high‐performance energy harvesting devices.
ZnO nanowire was tailored both physically and chemically to immobilize the enzyme glucose oxidase (GOD) for construction of a glucose sensor with high performance, which was ascribed to its high specific surface area and high isoelectric point value for efficient immobilization of high concentration of acidic enzymes and the mediating effect by the redox reaction of ZnO nanowires. The apparent Michaelis constants J max , and K M were adjusted in a large scope by tailoring the thickness of the GOD/ZnO nanowire layer and the enzyme load in the nanowired network. Thus, a variety of linear region, sensitivities and reaction rates of the sensor could be easily achieved. Moreover, the glucose sensor showed long term stability with the incorporation of the inorganic zinc oxide nanowire.
Transparent wood with high optical transmittance, excellent thermal insulation and high toughness has attracted significant attention as an energy-saving building material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.