If it is the author's pre-published version, changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published version.
This paper is concerned with computing large-deviation asymptotics for the loss process in a stylized queueing model that is fed by a Brownian input process. In addition, the dynamics of the queue, conditional on such a large deviation in the loss, is calculated. Finally, the paper computes the quasi-stationary distribution of the system and the corresponding dynamics, conditional on no loss occurring.
Specifying a proper input distribution is often a challenging task in simulation modeling. In practice, there may be multiple plausible distributions that can fit the input data reasonably well, especially when the data volume is not large. In this paper, we consider the problem of selecting the best from a finite set of simulated alternatives, in the presence of such input uncertainty. We model such uncertainty by an ambiguity set consisting of a finite number of plausible input distributions, and aim to select the alternative with the best worst-case mean performance over the ambiguity set. We refer to this problem as robust selection of the best (RSB). To solve the RSB problem, we develop a two-stage selection procedure and a sequential selection procedure; we then prove that both procedures can achieve at least a user-specified probability of correct selection under mild conditions. Extensive numerical experiments are conducted to investigate the computational efficiency of the two procedures. Finally, we apply the RSB approach to study a queueing system's staffing problem using synthetic data and an appointment-scheduling problem using real data from a large hospital in China. We find that the RSB approach can generate decisions significantly better than other widely used approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.