BackgroundChronic obstructive pulmonary disease (COPD) is influenced by both environmental and genetic factors. ADAM33 (a disintegrin and metalloproteinase 33) has been one of the most exciting candidate genes for asthma since its first association with the disease in Caucasian populations. Recently, ADAM33 was shown to be associated with excessive decline of lung function and COPD. The aim of this study was to evaluate the potential relationship between polymorphisms of ADAM33 and COPD in a Han population in northeastern China.MethodsA total of 312 COPD patients and a control group of 319 healthy volunteers were recruited for this study. Eight polymorphic loci (V4, T+1, T2, T1, S2, S1, Q-1, and F+1) of ADAM33 were selected for genotyping. Genotypes were determined by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.ResultsStatistically significant differences in the distributions of the T2G, T1G, S2C, and Q-1G alleles between patients and controls were observed (P < 0.001, odds ratio (OR) = 2.81, 95% confidence interval (CI) = 2.19-3.61; P < 0.001, OR = 2.60, 95% CI = 2.06-3.30; P = 0.03, OR = 1.31, 95% CI = 1.02-1.69; and P < 0.001, OR = 1.93, 95% CI = 1.50-2.50, respectively). Haplotype analysis showed that the frequencies of the CGGGGAGC, CGGGGAGT, CGGGCAGC, and CGGGGGGC haplotypes were significantly higher in the case group than in the control group (P = 0.0002, 0.0001, 0.0005, and 0.0074, respectively). In contrast, the haplotype CGAAGAGC was more common in the control group than in the case group (P < 0.0001).ConclusionThese preliminary results suggest an association between ADAM33 polymorphisms and COPD in a Chinese Han population.
Pulmonary fibrosis is an irreversible chronic progressive fibroproliferative lung disease, which usually has a poor prognosis. Previous studies have confirmed that the transplantation of bone marrow mesenchymal stem cells (MSCs) significantly reduces lung damage in a number of animal models. However, the underlying mechanism involved in this process remains to be elucidated. In the present study, a bleomycin (BLM)-induced female Wister rat model of fibrosis was established. At 0 or 7 days following BLM administration, rats were injected into the tail vein with 5-bromo-2-deoxyuridine-labeled MSCs extracted from male Wistar rats. The lung tissue of the rats injected with MSCs expressed the sex-determining region Y gene. The level surfactant protein C (SP-C), a marker for type II alveolar epithelial cells (AEC II), was higher in the group injected with MSCs at day 0 than that in the group injected at day 7. Furthermore, SP-C mRNA, but not aquaporin 5 mRNA, a marker for type I alveolar epithelial cells, was expressed in fresh bone marrow aspirates and the fifth generation of cultured MSCs. In addition, superoxide dismutase activity and total antioxidative capability, specific indicators of oxidative stress, were significantly increased in the lung tissue of the MSC-transplanted rats (P<0.05). In conclusion, to alleviate pulmonary fibrosis, exogenous MSCs may be transplanted into damaged lung tissue where they differentiate into AEC II and exert their effect, at least in part, through blocking oxidative stress.
Background: In recent years, a large number of studies have shown that differentially expressed lncRNAs are capable of promoting the occurrence and development of tumors by regulating cell proliferation and differentiation. However, the biological effects of lncRNAs in non-small cell lung cancer (NSCLC) are still needed to be further investigated. Methods: The differentially expressed lncRNAs in NSCLC tissues in the downloaded profiles from GEO database were analyzed and further verified in 100 pairs of NSCLC samples collected in our hospital. After identification of the target gene MIR210HG, the relationship between MIR210HG expression and clinical data of NSCLC patients was analyzed. Regulatory effects of MIR210HG on proliferation, migration, and invasion of NSCLC cells were detected by CCK-8, colony formation, and transwell assay, respectively. The binding condition of MIR210HG and DNA methyltransferase 1 (DNMT1) was detected by RNA binding protein immunoprecipitation. Subsequently, chromatin immunoprecipitation assay assessed the promoter binding of DNMT1 to CACNA2D2. Rescue experiments were conducted to assess whether CACNA2D2 can reverse the function of MIR210HG. Results: MIR210HG was highly expressed in NSCLC tissues not only in GSE30219 dataset but also in our collected NSCLC tissues. MIR210HG expression was correlated to tumor stage and lymph node metastasis of NSCLC patients. Besides, lower disease-free survival (DFS) and overall survival (OS) were found in NSCLC patients with high-level MIR210HG compared with those with low-level MIR210HG. Regression analysis indicated that MIR210HG was the independent risk factor for DFS and OS of NSCLC patients. In vitro experiments demonstrated that MIR210HG knockdown remarkably inhibited proliferation and migration of NSCLC cells. MIR210HG could recruit DNMT1, thereafter promoting methylation of CACNA2D2 promoter region. CACNA2D2 overexpression remarkably inhibited cell proliferation. Moreover, inhibited proliferation induced by MIR210HG knockdown was reversed by CACNA2D2 knockdown. Conclusion: MIR210HG can promote the tumorigenesis of NSCLC by inhibiting the expression of CACNA2D2. Our findings provide new therapeutic strategies for the future treatment of NSCLC.
Background: Growing evidence indicates that heme oxygenase-1 (HO-1) is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG) levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS) production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS) and transforming growth factor-β1 (TGF-β1) in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC) or with phosphatidylinositol 3-kinase (PI3K)/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.