The effects of Nb concentration and temperature on the generalized stacking fault energy (GSFE) of basal, prismatic I, pyramidal I and II plane for Zr-Nb alloys are investigated by molecular dynamics simulations (MD). The stable and unstable SFEs of different slip systems show no significant change with the increasing Nb concentration (0, 0.5, 1.0, 1.5, 2.0, and 2.5 at.%) in Zr-Nb alloys at 0 K. Basal, pyramidal I and II planes slip of Zr-Nb alloys prefer to deform by full dislocation with the temperature increases. Additionally, plastic deformation anisotropy of Zr-Nb alloy is improved with the increasing temperature using both embedded atom method (EAM) and angular-dependent potentials (ADP). The present work provides a theoretical basis for understanding enhanced plasticity of Zr-Nb alloys under finite temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.