Objectives:Paresthesia-free stimulation such as high frequency and burst have been demonstrated as effective therapies for neuropathic pain. The aim of this meta-analysis was to evaluate the efficacy and safety of conventional spinal cord stimulation (SCS) in the treatment of refractory angina pectoris (RAP).Materials and Methods:Relevant randomized controlled trials that investigated SCS for patients with RAP were comprehensively searched in Medline, Pubmed, Embase, and Cochrane Library. Five meta-analyses were performed examining the changes in Canadian Cardiovascular Society classes, exercise time, Visual Analog Scale (VAS) scores of pain, Seattle Angina Questionnaire, and nitroglycerin use in RAP patients after SCS therapy. We analyzed standardized mean differences (MD) and 95% confidence intervals (CIs) for each outcome by Review Manager 5.0 and STATA 12.0.Results:A total of 12 randomized controlled trials involving 476 RAP patients were identified. A trend of reduction in the angina frequency (MD=−9.03, 95% CI, −15.70 to −2.36) and nitroglycerin consumption (MD=−0.64, 95% CI, −0.84 to −0.45) could be observed in the SCS group. Compared with the control group, SCS showed benefit on increasing exercise time (MD=0.49, 95% CI, 0.13-0.85) and treatment satisfaction (MD=6.87, 95% CI, 2.07-11.66) with decreased VAS scores of pain (MD=−0.50, 95% CI, −0.81 to −0.20) and disease perception (MD=−8.34, 95% CI, −14.45 to −2.23). However, the result did not reach the significance level in terms of physical limitation (95% CI, −8.75 to 3.38; P=0.39) or angina stability (95% CI, −7.55 to 3.67; P=0.50).Discussion:The current meta-analysis suggested that SCS was a potential alternative in the treatment of PAP patients. Further investigation for finding the appropriate intensity of stimulation is required before this treatment should be widely recommended and applied.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.
The present study aimed to investigate cognitive dysfunction in the hippocampus induced by sepsis-associated encephalopathy (SAE) via acetylation of cyclophilin D (CypD) and opening of mitochondrial permeability transition pore. It also explored whether activating sirtuin 3 (SIRT3) can mediate deacetylation of CypD and prevent the development of SAE. Male mice were randomly assigned to six groups: sham group, cecal ligation puncture group, CypD siRNA transfection (CypD-si) group, CypD control siRNA transfection (CypD-c) group, SIRT3 overexpression vector pcDNA3.1 (SIRT3-p) group, and SIRT3 empty vector pcDNA3.1 (SIRT3-v) group (n = 18). The CypD-si and CypD-c groups were transfected with CypD siRNA and CypD control siRNA, respectively. The SIRT3-p and SIRT3-v groups were injected with SIRT3 pcDNA3.1 and vector pcDNA3.1, respectively. The learning and memory function was assessed using the learning version of the Morris water maze test. Then, cell apoptosis and the levels of CypD, acetylated CypD, SIRT-3, interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and caspase-3 in the hippocampus were determined. The levels of CypD and acetylation of CypD increased in the hippocampus induced by SAE. Increasing SIRT3 and decreasing CypD can attenuate cognitive impairment and neuroapoptosis, and protect the integrity of mitochondrial membrane from damage and restore the protein expressions of IL-6, TNF-α, and caspase-3. Activating SIRT3-mediated deacetylation of CypD attenuated learning and memory dysfunction induced by SAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.