Intermittent fasting (IF) protects against the development of metabolic diseases and cancer, but whether it can prevent diabetic microvascular complications is not known. In mice, we examined the impact of long-term IF on diabetic retinopathy (DR). Despite no change in glycated hemoglobin, mice on the IF regimen displayed significantly longer survival and a reduction in DR end points, including acellular capillaries and leukocyte infiltration. We hypothesized that IF-mediated changes in the gut microbiota would produce beneficial metabolites and prevent the development of DR. Microbiome analysis revealed increased levels of Firmicutes and decreased Bacteroidetes and Verrucomicrobia. Compared with mice on ad libitum feeding, changes in the microbiome of the mice on IF were associated with increases in gut mucin, goblet cell number, villi length, and reductions in plasma peptidoglycan. Consistent with the known modulatory effects of Firmicutes on bile acid (BA) metabolism, measurement of BAs demonstrated a significant increase of tauroursodeoxycholate (TUDCA), a neuroprotective BA, in on IF but not in on AL feeding. TGR5, the TUDCA receptor, was found in the retinal primary ganglion cells. Expression of TGR5 did not change with IF or diabetes. However, IF reduced retinal TNF-α mRNA, which is a downstream target of TGR5 activation. Pharmacological activation of TGR5 using INT-767 prevented DR in a second diabetic mouse model. These findings support the concept that IF prevents DR by restructuring the microbiota toward species producing TUDCA and subsequent retinal protection by TGR5 activation.
Hyperphosphatemia associated with chronic kidney disease is one of the factors that can promote vascular calcification, and intestinal P(i) absorption is one of the pharmacological targets that prevents it. The type II Na-P(i) cotransporter NaPi-2b is the major transporter that mediates P(i) reabsorption in the intestine. The potential role and regulation of other Na-P(i) transporters remain unknown. We have identified expression of the type III Na-P(i) cotransporter PiT-1 in the apical membrane of enterocytes. Na-P(i) transport activity and NaPi-2b and PiT-1 proteins are mostly expressed in the duodenum and jejunum of rat small intestine; their expression is negligible in the ileum. In response to a chronic low-P(i) diet, there is an adaptive response restricted to the jejunum, with increased brush border membrane (BBM) Na-P(i) transport activity and NaPi-2b, but not PiT-1, protein and mRNA abundance. However, in rats acutely switched from a low- to a high-P(i) diet, there is an increase in BBM Na-P(i) transport activity in the duodenum that is associated with an increase in BBM NaPi-2b protein abundance. Acute adaptive upregulation is restricted to the duodenum and induces an increase in serum P(i) that produces a transient postprandial hyperphosphatemia. Our study, therefore, indicates that Na-P(i) transport activity and NaPi-2b protein expression are differentially regulated in the duodenum vs. the jejunum and that postprandial upregulation of NaPi-2b could be a potential target for treatment of hyperphosphatemia.
Background:The bile acid receptors FXR and TGR5 have pleiotropic functions, including immune modulation. Results: Treatment of a murine model of nonalcoholic fatty liver disease (NAFLD) with a dual FXR/TGR5 agonist decreased intrahepatic inflammation and altered the immune phenotype of monocytes. Conclusion: Bile acid receptor activation improves NAFLD. Significance: These results identify potential targeting strategies for treatment of NAFLD.
Diet-induced obesity is associated with proteinuria and glomerular disease in humans and rodents. We have shown that in mice fed a high-fat diet, increased renal expression of the transcriptional factor sterol-regulatory element binding protein-1 (SREBP-1) plays a critical role in renal lipid accumulation and increases the activity of proinflammatory cytokines and profibrotic growth factors. In the current study, we have determined a key role of the farnesoid X receptor (FXR) in modulating renal SREBP-1 activity, glomerular lesions, and proteinuria. We found that feeding a Western-style diet to DBA/2J mice results in proteinuria, podocyte loss, mesangial expansion, renal lipid accumulation, and increased expression of proinflammatory factors, oxidative stress, and profibrotic growth factors. Treatment of these mice with the highly selective and potent FXR-activating ligand 6-alpha-ethyl-chenodeoxycholic acid (INT-747) ameliorates triglyceride accumulation by modulating fatty acid synthesis and oxidation, improves proteinuria, prevents podocyte loss, mesangial expansion, accumulation of extracellular matrix proteins, and increased expression of profibrotic growth factors and fibrosis markers, and modulates inflammation and oxidative stress. Our results therefore indicate that FXR activation could represent an effective therapy for treatment of abnormal renal lipid metabolism with associated inflammation, oxidative stress, and kidney pathology in patients affected by obesity.
OBJECTIVEThe pathogenesis of diabetic nephropathy is complex and involves activation of multiple pathways leading to kidney damage. An important role for altered lipid metabolism via sterol regulatory element binding proteins (SREBPs) has been recently recognized in diabetic kidney disease. Our previous studies have shown that the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor, modulates renal SREBP-1 expression. The purpose of the present study was then to determine if FXR deficiency accelerates type 1 diabetic nephropathy in part by further stimulation of SREBPs and related pathways, and conversely, if a selective FXR agonist can prevent the development of type 1 diabetic nephropathy.RESEARCH DESIGN AND METHODSInsulin deficiency and hyperglycemia were induced with streptozotocin (STZ) in C57BL/6 FXR KO mice. Progress of renal injury was compared with nephropathy-resistant wild-type C57BL/6 mice given STZ. DBA/2J mice with STZ-induced hyperglycemia were treated with the selective FXR agonist INT-747 for 12 weeks. To accelerate disease progression, all mice were placed on the Western diet after hyperglycemia development.RESULTSThe present study demonstrates accelerated renal injury in diabetic FXR KO mice. In contrast, treatment with the FXR agonist INT-747 improves renal injury by decreasing proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis, and modulating renal lipid metabolism, macrophage infiltration, and renal expression of SREBPs, profibrotic growth factors, and oxidative stress enzymes in the diabetic DBA/2J strain.CONCLUSIONSOur findings indicate a critical role for FXR in the development of diabetic nephropathy and show that FXR activation prevents nephropathy in type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.