Displacement prediction of reservoir landslide remains inherently uncertain since a complete understanding of the complex nonlinear, dynamic landslide system is still lacking. An appropriate quantification of predictive uncertainties is a key underpinning of displacement prediction and mitigation of reservoir landslide. A density prediction, offering a full estimation of the probability density for future outputs, is promising for quantification of the uncertainty of landslide displacement. In the present study, a hybrid computational intelligence approach is proposed to build a density prediction model of landslide displacement and quantify the associated predictive uncertainties. The hybrid computational intelligence approach consists of two steps: first, the input variables are selected through copula analysis; second, kernel-based support vector machine quantile regression (KSVMQR) is employed to perform density prediction. The copula-KSVMQR approach is demonstrated through a complex landslide in the Three Gorges Reservoir Area (TGRA), China. The experimental study suggests that the copula-KSVMQR approach is capable of construction density prediction by providing full probability density distributions of the prediction with perfect performance. In addition, different types of predictions, including interval prediction and point prediction, can be derived from the obtained density predictions with excellent performance. The results show that the mean prediction interval widths of the proposed approach at ZG287 and ZG289 are 27.30 and 33.04, respectively, which are approximately 60 percent lower than that obtained using the traditional bootstrap-extreme learning machine-artificial neural network (Bootstrap-ELM-ANN). Moreover, the obtained point predictions show great consistency with the observations, with correlation coefficients of 0.9998. Given the satisfactory performance, the presented copula-KSVMQR approach shows a great ability to predict landslide displacement.
Recently, integrated machine learning (ML) metaheuristic algorithms, such as the artificial bee colony (ABC) algorithm, genetic algorithm (GA), gray wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, and water cycle algorithm (WCA), have become predominant approaches for landslide displacement prediction. However, these algorithms suffer from poor reproducibility across replicate cases. In this study, a hybrid approach integrating k-fold cross validation (CV), metaheuristic support vector regression (SVR), and the nonparametric Friedman test is proposed to enhance reproducibility. The five previously mentioned metaheuristics were compared in terms of accuracy, computational time, robustness, and convergence. The results obtained for the Shuping and Baishuihe landslides demonstrate that the hybrid approach can be utilized to determine the optimum hyperparameters and present statistical significance, thus enhancing accuracy and reliability in ML-based prediction. Significant differences were observed among the five metaheuristics. Based on the Friedman test, which was performed on the root mean square error (RMSE), Kling-Gupta efficiency (KGE), and computational time, PSO is recommended for hyperparameter tuning for SVR-based displacement prediction due to its ability to maintain a balance between precision, computational time, and robustness. The nonparametric Friedman test is promising for presenting statistical significance, thus enhancing reproducibility.
As vital comments on landslide early warning systems, accurate and reliable displacement prediction is essential and of significant importance for landslide mitigation. However, obtaining the desired prediction accuracy remains highly difficult and challenging due to the complex nonlinear characteristics of landslide monitoring data. Based on the principle of “decomposition and ensemble”, a three-step decomposition-ensemble learning model integrating ensemble empirical mode decomposition (EEMD) and a recurrent neural network (RNN) was proposed for landslide displacement prediction. EEMD and kurtosis criteria were first applied for data decomposition and construction of trend and periodic components. Second, a polynomial regression model and RNN with maximal information coefficient (MIC)-based input variable selection were implemented for individual prediction of trend and periodic components independently. Finally, the predictions of trend and periodic components were aggregated into a final ensemble prediction. The experimental results from the Muyubao landslide demonstrate that the proposed EEMD-RNN decomposition-ensemble learning model is capable of increasing prediction accuracy and outperforms the traditional decomposition-ensemble learning models (including EEMD-support vector machine, and EEMD-extreme learning machine). Moreover, compared with standard RNN, the gated recurrent unit (GRU)-and long short-term memory (LSTM)-based models perform better in predicting accuracy. The EEMD-RNN decomposition-ensemble learning model is promising for landslide displacement prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.