A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.
Timely and accurate information about spatial distribution of tree species in urban areas provides crucial data for sustainable urban development, management and planning. Very high spatial resolution data collected by sensors onboard Unmanned Aerial Vehicles (UAV) systems provide rich data sources for mapping tree species. This paper proposes a method of tree species mapping from UAV images over urban areas using similarity in tree-crown object histograms and a simple thresholding method. Tree-crown objects are first extracted and used as processing units in subsequent steps. Tree-crown object histograms of multiple features, i.e., spectral and height related features, are generated to quantify within-object variability. A specific tree species is extracted by comparing similarity in histogram between a target tree-crown object and reference objects. The proposed method is evaluated in mapping four different tree species using UAV multispectral ortho-images and derived Digital Surface Model (DSM) data collected in Shanghai urban area, by comparing with an existing method. The results demonstrate that the proposed method outperforms the comparative method for all four tree species, with improvements of 0.61–5.81% in overall accuracy. The proposed method provides a simple and effective way of mapping tree species over urban area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.