Foliar nitrogen (N) fertilizer application at later stages of wheat (Triticum aestivum L.) growth is an effective method of attenuating drought stress and improving grain filling. The influences or modes of action of foliar application of various nitrogen forms on wheat growth and grain filling need further research. The objective of this study was to examine the regulatory effects of various forms of foliar nitrogen [NO3–, NH4+, and CO(NH2)2] on wheat grain filling under drought stress and to elucidate their underlying mechanisms. The relative effects of each nitrogen source differed in promoting grain filling. Foliar NH4+-N application notably prolonged the grain filling period. In contrast, foliar application of CO(NH2)2 and NO3–-N accelerated the grain filling rate and regulated levels of abscisic acid (ABA), z-riboside (ZR), and ethylene (ETH) in wheat grains. Analysis of gene expression revealed that CO(NH2)2 and NO3–-N upregulated the genes involved in the sucrose–starch conversion pathway, promoting the remobilization of carbohydrates and starch synthesis in the grains. Besides, activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased, whereas the content of malondialdehyde (MDA) declined under foliar nitrogen application (especially NH4+-N). Under drought stress, enhancement of carbohydrate remobilization and sink strength became key factors in grain filling, and the relative differences in the effects of three N forms became more evident. In conclusion, NH4+-N application improved the antioxidant enzyme system and delayed photoassimilate transportation. On the other hand, foliar applications of NO3–-N and CO(NH2)2 enhanced sink capacity and alleviated drought stress injury in wheat.
Potassium (K) has a significant effect on wheat yield and quality. Owing to the limitations of irrigation and production costs, soil-based applications of potassium fertilizer are not performed in wheat production on the Loess Plateau of China. In the late growth stage of wheat, potassium deficiency occurs even under sufficient nitrogen/phosphorus (N/P) levels, so it is necessary to supplement potassium through foliar spraying. However, there are few studies on the effect of the foliar application of potassium fertilizer (KFA) on wheat quality. Field experiments were conducted at two experimental sites for 2 years to study the effects of different potassium fertilizer application levels and periods on wheat yield and quality. The results showed that KFA had no significant effect on the yield of the wheat variety Xinong 20 (XN20) but increased the yield of the wheat variety Xiaoyan 22 (XY22). The improvement effect of KFA on the wet gluten content and stabilization time (ST) of XN20 was better than that on these parameters of XY22, while the sedimentation value (SV) and formation time (FT) showed the opposite trend. KFA significantly reduced the albumin content of the two varieties but had no significant effect on the globulin content. Compared with that at the other two stages, the potassium application in the form of potash fertilizer spray at a concentration of 60 mmol L−1 (K2) at the flowering stage (BBCH 65) significantly increased the protein content, wet gluten content, SV and gluten protein content in XN20 grains, whereas the application at 10 days after flowering (AA10, BBCH 71) at the K2 concentration was more beneficial to prolonging the dough FT. For XY22, the application of potassium fertilizer at the K2 concentration at the flowering stage increased the wet gluten and gluten protein levels and dough development time. There were significant genotypic differences in the composition and content of HMW-GS between the two varieties. KFA significantly increased the levels of the 1, 7 + 8, and 4 + 12 subunits in XN20 and the 1 subunit in XY22, but had no significant effect on the 2 + 12 subunit in XY22. Partial least squares path modelling (PLS-PM) analysis showed that the processing quality indexes (SV, FT, ST) and gluten protein and HMW-GS levels were regulated by the potassium fertilizer foliar spraying stage and concentration and revealed in part that KFA affected the processing quality by affecting the HMW-GS content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.