Oxidation of retinol via retinaldehyde results in the formation of the essential morphogen all-trans-retinoic acid (ATRA). Previous studies have identified critical roles in the regulation of embryonic ATRA levels for retinol, retinaldehyde, and ATRA-oxidizing enzymes; however, the contribution of retinaldehyde reductases to ATRA metabolism is not completely understood. Herein, we investigate the role of the retinaldehyde reductase Dhrs3 in embryonic retinoid metabolism using a Dhrs3-deficient mouse. Lack of DHRS3 leads to a 40% increase in the levels of ATRA and a 60% and 55% decrease in the levels of retinol and retinyl esters, respectively, in Dhrs3(-/-) embryos compared to wild-type littermates. Furthermore, accumulation of excess ATRA is accompanied by a compensatory 30-50% reduction in the expression of ATRA synthetic genes and a 120% increase in the expression of the ATRA catabolic enzyme Cyp26a1 in Dhrs3(-/-) embryos vs. controls. Excess ATRA also leads to alterations (40-80%) in the expression of several developmentally important ATRA target genes. Consequently, Dhrs3(-/-) embryos die late in gestation and display defects in cardiac outflow tract formation, atrial and ventricular septation, skeletal development, and palatogenesis. These data demonstrate that the reduction of retinaldehyde by DHRS3 is critical for preventing formation of excess ATRA during embryonic development.
Human pregnane X receptor (PXR) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Rifaximin, a human PXR activator, is in clinical trials for treatment of IBD and has demonstrated efficacy in Crohn's disease and active ulcerative colitis. In the current study, the protective and therapeutic role of rifaximin in IBD and its respective mechanism were investigated. PXR-humanized (hPXR), wild-type, and Pxr-null mice were treated with rifaximin in the dextran sulfate sodium (DSS)-induced and trinitrobenzene sulfonic acid (TNBS)-induced IBD models to determine the protective function of human PXR activation in IBD. The therapeutic role of rifaximin was further evaluated in DSS-treated hPXR and Pxr-null mice. Results demonstrated that preadministration of rifaximin ameliorated the clinical hallmarks of colitis in DSS-and TNBS-treated hPXR mice as determined by body weight loss and assessment of diarrhea, rectal bleeding, colon length, and histology. In addition, higher survival rates and recovery from colitis symptoms were observed in hPXR mice, but not in Pxr-null mice, when rifaximin was administered after the onset of symptoms. Nuclear factor B (NF-B) target genes were markedly downregulated in hPXR mice by rifaximin treatment. In vitro NF-B reporter assays demonstrated inhibition of NF-B activity after rifaximin treatment in colon-derived cell lines expressing hPXR. These findings demonstrated the preventive and therapeutic role of rifaximin on IBD through human PXR-mediated inhibition of the NF-B signaling cascade, thus suggesting that human PXR may be an effective target for the treatment of IBD.
Fourteen new polyketides classified as four phthalides, setosphalides A and B, 5- O-desmethylcolletotrialide, and ( S)-colletotrialide (1-4), three isocoumarin derivatives, exserolides I-K (5-7), four pyrones, setosphapyrones A-D (8-11), one furanone (12), and two depsidones (13 and 14), along with 17 known polyketides were isolated from cultures of the sponge-derived fungus Setosphaeria sp. SCSIO41009. The structures and absolute configurations of these new compounds (1-14) were determined by spectroscopic analyses, X-ray diffraction, chiral-phase HPLC analysis, modified Mosher's method, and comparison of ECD spectra to calculations. Setosphalides A (1) and B (2) are the first examples possessing a 5,5 spiroketal skeleton in phthalide derivatives. Botryorhodines I (13) and J (14) showed moderate antifungal activities against the phytopathogenic fungi Colletotrichum asianum and Colletotrichum acutatum. Compound 18 (7- O-demethylmonocerin) exhibited potent radical scavenging activity against DPPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.