Cytokine-activated receptors undergo extracellular domain dimerization, which is necessary to activate intracellular signaling pathways. Here, we report that in prolactin (PRL)-treated cells, PRL receptor (PRLR) undergoes cytoplasmic loop dimerization that is acetylation-dependent. PRLR-recruited CREB-binding protein (CBP) acetylates multiple lysine sites randomly distributed along the cytoplasmic loop of PRLR. Two PRLR monomers appear to interact with each other at multiple parts from the membrane-proximal region to the membrane-distal region, relying on the coordination among multiple lysine sites neutralized via acetylation. Cytoplasmic loop-dimerized PRLR activates STAT5, which is also acetylated by CBP and undergoes acetylation-dependent dimerization. PRLR dimerization and subsequent signaling are enhanced by treating the cells with deacetylase sirtuin (SIRT) inhibitor nicotinamide or histone deacetylase (HDAC) inhibitor trichostatin A but inhibited by expressing exogenous deacetylase SIRT2 or HDAC6. Our results suggest that acetylation and deacetylation provide the rheostatlike regulation for the cytokine receptor PRLR in its cytoplasmic loop dimerization and subsequent STAT5 activation.acetylation | CREB-binding protein | dimerization | prolactin receptor | STAT5
BackgroundMinimally invasive therapies, such as microwave ablation (MWA), are widely used for the treatment of solid tumors. Previous studies suggest that MWA is feasible for the treatment of small breast cancer, and thermal ablation may induce adaptive antitumor immunity. However, the induced immune responses are mostly weak, and the immunomodulation effects of MWA in breast cancer are unclear. Immunostimulant OK-432 can induce tumor-specific T-cell responses and may augment the immunity induced by MWA.MethodsWe treated 4T1 breast cancer bearing BALB/c mice with MWA, OK-432, MWA plus OK-432, or left without treatment. Survival time was evaluated with the Kaplan–Meyer method comparing survival curves by log-rank test. On day 25 after ablation, surviving mice received tumor rechallenge, and the rechallenged tumor volumes were calculated every 5 days. Immunohistochemistry and flow cytometry were used to evaluate the T-cell immune responses in ablated tissues and spleens. The tumor-specific immunity was assessed by enzyme-linked immunospot assays. Besides, the cytokine patterns were identified from enzyme-linked immunosorbent assay.ResultsMicrowave ablation plus OK-432 resulted in longer survival than single treatment and protect most surviving mice from tumor rechallenge. Both local and systemic T-cell responses were induced by MWA and were further enhanced by subsequent administration of OK-432. Moreover, the combination of MWA and OK-432 induced stronger tumor-specific immune responses than MWA alone. In addition, OK-432 and MWA synergistically promoted the production of Th1-type but not Th2-type cytokines, and polarized T-cell responses to Th1-dominant state.ConclusionsThe T-cell immune responses were activated by MWA in breast cancer. Furthermore, the combination of MWA and OK-432 induced Th1-type response and elicited specific antitumor immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.