This work reports on the toxicity of CuO nanoparticles (NPs) to maize (Zea mays L.) and their transport and redistribution in the plant. CuO NPs (100 mg L(-1)) had no effect on germination, but inhibited the growth of maize seedlings; in comparison the dissolved Cu(2+) ions and CuO bulk particles had no obvious effect on maize growth. CuO NPs were present in xylem sap as examined by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), showing that CuO NPs were transported from roots to shoots via xylem. Split-root experiments and high-resolution TEM observation further showed that CuO NPs could translocate from shoots back to roots via phloem. During this translocation, CuO NPs could be reduced from Cu (II) to Cu (I). To our knowledge, this is the first report of root-shoot-root redistribution of CuO NPs within maize. The current study provides direct evidence for the bioaccumulation and biotransformation of CuO NPs (20-40 nm) in maize, which has significant implications on the potential risk of NPs and food safety.
Objective We aimed to evaluate the performance of the newly developed deep learning radiomics of elastography (Dlre) for assessing liver fibrosis stages. Dlre adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWe) images. Design a prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWe, aspartate transaminaseto-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. analysis of receiver operating characteristic (rOc) curves was performed to calculate the optimal area under the rOc curve (aUc) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2). results aUcs of Dlre were 0.97 for F4 (95% ci 0.94 to 0.99), 0.98 for ≥F3 (95% ci 0.96 to 1.00) and 0.85 (95% ci 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWe in ≥F2. its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. no significant variation of the performance was found if different training cohorts were applied.
Supramolecular nanoparticles for photothermal therapy (PTT) have shown promising therapeutic efficacy in the primary tumor and great potential for turning the whole-body immune microenvironment from "cold" to "hot," which allows for the simultaneous treatment of the primary tumor and the metastatic site. In this work, we develop a liposome-based PTT nanoparticle through the self-assembly of FDA-approved intravenous injectable lipids and a photothermal agent, indocyanine green (ICG). The obtained ICG-liposome shows long-term storage stability, high ICG encapsulation efficiency (>95%), and enhanced near-infrared (NIR) light-triggered photothermal reaction both in vitro and in vivo. The ICG-liposome efficiently eradicated the primary tumor upon laser irradiation in two colon cancer animal models (CT26 and MC38) and promoted the infiltration of CD8 T cells to distant tumors. However, PTT from ICG-liposome shows only a minimal effect on the inhibition of distant tumor growth in long-term monitoring, predicting other immunosuppressive mechanisms that exist in the distant tumor. By immune-profiling of the tumor microenvironment, we find that the distant tumor growth after PTT highly correlates to compensatory upregulation of immune checkpoint biomarkers, including program death-1 (PD-1), T-cell immunoglobulin, and mucin domain-containing protein 3 (TIM-3), in tumor-infiltrating CD8 T cells. Based on this mechanism, we combine dual PD-1 and TIM-3 blockade with PTT in an MC38 tumor model. This combo successfully clears the primary tumor, generates a systemic immune response, and inhibits the growth of the distant tumor. The ICG-liposome-combined PD-1/TIM-3 blockade strategy sheds light on the future clinical use of supramolecular PTT for cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.