In this investigation, we selected PAX3/FKHR and PAX7/FKHR fusion transcript-positive and -negative alveolar rhabdomyosarcomas (ARMSs) and embryonal rhabdomyosarcomas (ERMSs) with and without anaplastic features, to ascertain genomic imbalance differences and/or similarities within these histopathologic and genetic rhabdomyosarcoma (RMS) variants. Comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) studies were performed on 45 rhabdomyosarcoma specimens consisting of 23 ARMSs and 22 ERMSs (12 ERMS cases were included from an earlier study). The anaplastic variant of RMS has not previously been subjected to CGH analysis. Overall, the most prominent imbalances were gain of chromosomes or chromosomal regions 2/2q (40%), 7/7q (31%), 8/8p (53%), 11/11q (31%), 12q13-15 (49%), 13q14 (22%), and 20/20p (31%), and loss of 1p36 (27%), 3p14-21 (22%), 9q21-22 (33%), 10q22-qter (18%), 16q (27%), 17p (22%), and 22 (22%). These gains and losses were distributed equally between ARMS and ERMS histologic subtypes (excluding 7/7q and 11/11q gain that were observed chiefly in ERMS), demonstrating that these entities are similar with respect to recurrent genomic imbalances. Moreover, genomic imbalances were also evenly distributed among the ARMS fusion transcript subtypes, providing evidence for a genetic kinship despite the absence of a fusion transcript in some cases. Genomic amplification was detected in 26% and 23% of the ARMS and ERMS cases, respectively (with nearly all of the latter subset exhibiting anaplastic features). One amplicon, involving 15q25-26, corresponds to the locus of the insulin-like growth factor type I receptor (IGF1R) gene. Amplification of IGF1R was confirmed molecularly in the cases exhibiting a 15q25-26 amplicon. In summary, these results indicate that genomic gains and losses involve alike chromosomes with similar frequencies within the histopathologic and genetic subtypes of rhabdomyosarcoma, that genomic amplification is frequent not only in the alveolar histologic subtype of rhabdomyosarcoma but also in ERMS with anaplasia, and that amplification of IGF1R possibly plays a role in the development or progression of a subset of rhabdomyosarcomas.
The properties and function of Ca(2+)-activated K+ (KCa) and voltage-dependent K+ (IK) currents of rabbit coronary myocytes were studied under whole cell voltage-clamp conditions (22 degrees C). Inhibition of KCa by tetraethylammonium chloride (1-10 mM) or charybdotoxin (50-100 nM) suppressed noisy outward rectifying current elicited by 5-s voltage steps or ramp at potentials > 0 mV, reduced the hump of the biphasic ramp current-voltage relation, and shifted by less than +5 mV the potential at which no net steady-state current is recorded (Enet; index of resting membrane potential). Inhibition of steady-state inward Ca2+ currents [ICa(L)] by nifedipine (1 microM) displaced Enet by -11 mV. Analysis of steady-state voltage dependence of IK supported the existence of a "window" current between -50 and 0 mV. 4-Aminopyridine (2 mM) blocked a noninactivating component of IK evoked between -30 and -40 mV, abolished the hump current during ramps, and shifted Enet by more than +15 mV; hump current persisted during 2-min ramp depolarizations and peaked near the maximum overlap of the steady-state activation and inactivation curves of IK (about -22 mV). A threefold rise in extracellular Ca2+ concentration (1.8-5.4 mM) enhanced time-dependent outward K+ current (6.7-fold at +40 mV) and shifted Enet by -30 mV. It is concluded that, under steady-state conditions, IK and ICa(L) play a major role in regulating resting membrane potential at a physiological level of intracellular Ca2+ concentration, with a minor contribution from KCa. However, elevation of intracellular Ca2+ concentration enhances KCa and hyperpolarizes the myocyte to limit Ca2+ entry through ICa(L).
Nephrotic syndrome (NS) is a genetically heterogeneous group of diseases that are divided into steroid-sensitive NS (SSNS) and steroid-resistant NS (SRNS). SRNS inevitably leads to end-stage kidney disease, and no curative treatment is available. To date, mutations in more than 24 genes have been described in Mendelian forms of SRNS; however, no Mendelian form of SSNS has been described. To identify a genetic form of SSNS, we performed homozygosity mapping, whole-exome sequencing, and multiplex PCR followed by next-generation sequencing. We thereby detected biallelic mutations in EMP2 (epithelial membrane protein 2) in four individuals from three unrelated families affected by SRNS or SSNS. We showed that EMP2 exclusively localized to glomeruli in the kidney. Knockdown of emp2 in zebrafish resulted in pericardial effusion, supporting the pathogenic role of mutated EMP2 in human NS. At the cellular level, we showed that knockdown of EMP2 in podocytes and endothelial cells resulted in an increased amount of CAVEOLIN-1 and decreased cell proliferation. Our data therefore identify EMP2 mutations as causing a recessive Mendelian form of SSNS.
In an HBV-immunocompetent mouse model, non-alcoholic hepatic steatosis inhibited HBV replication, as indicated by the reduction of HBV DNA and HBV-related antigens. HBV replication did not alter lipid metabolism in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.