A variational symplectic integrator for the guiding center motion of charged particles in general magnetic fields is developed to enable accurate long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding center motion, the action of the guiding center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure and globally bounds the numerical error in energy by a small number for all simulation time steps. Compared with standard integrators, such as the fourth order Runge–Kutta method, the variational symplectic integrator has superior numerical properties over long integration time. For example, in a two-dimensional tokamak geometry, the variational symplectic integrator is able to guarantee the accuracy for both the trapped and transit particle orbits for arbitrarily long simulation time. This is important for modern large-scale simulation studies of fusion plasmas where it is critical to use algorithms with long-term accuracy and fidelity. The variational symplectic integrator is expected to have a wide range of applications.
The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.