Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Salidroside, an active ingredient isolated from Rhodiola rosea is proposed to exert protective effects against PAH. However, the function of salidroside in PAH has not been investigated systematically and the underlying mechanisms are not clear. To investigate the effects of salidroside on PAH, the mice in chronic hypoxia model of PAH were given by an increasing concentration of salidroside (0, 16 mg/kg, 32 mg/kg, and 64 mg/kg). After salidroside treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary arterial remodeling were attenuated, suggesting a protective role played by salidroside in PAH. To explore the potential mechanisms, the apoptosis of PASMCs after salidroside treatment under hypoxia conditions were determined in vivo and in vitro, and also the mitochondria-dependent apoptosis factors, Bax, Bcl-2, cytochrome C, and caspase 9 were examined. The results revealed that salidroside reversed hypoxia-induced cell apoptosis resistance at least partially via a mitochondria-dependent pathway. In addition, salidroside upregulated the expression of adenosine A2a receptor (A2aR) in lung tissues of mice and in PASMCs in vitro after hypoxia exposure. Combined the evidence above, we conclude that salidroside can attenuate chronic hypoxia-induced PAH by promoting PASMCs apoptosis via an A2aR related mitochondria dependent pathway.
Artesunate can be used in the treatment of NSCLC. Artesunate combined with NP can elevate the short-term survival rate and prolong the TTP of patients with advanced NSCLC without extra side effects.
BackgroundRhein is a lipophilic anthraquinone extensively found in medicinal herbs. Emerging evidence suggests that rhein has significant antitumor effects, supporting its potential use as an antitumor agent. The IL6/STAT3 signaling pathway has been suggested as an attractive target for the discovery of novel cancer therapeutics.MethodsThe human pancreatic cancer cell lines AsPC-1, Patu8988T, BxPC-3 and PANC-1, and immunodeficient mice were chosen as models to study the effects of rhein. The potent antiproliferative and proapoptotic effects of rhein were examined by cell viability, cellular morphology, apoptosis and colony formation assays. The STAT3 luciferase report assay, immunostaining analysis and Western blot analysis revealed the inhibition of the IL6/STAT3 signaling axis.ResultsApoptosis was induced by adjunctive use of rhein with epidermal growth factor receptor (EGFR) inhibitors in pancreatic cancer cells as verified by cell apoptosis analysis and changes in the expression level of apoptotic/anti-apoptotic proteins BCL-2, BAX, Caspase 3 and Cl-PARP. Suppression of the phosphorylation of STAT3 and EGFR were also observed as a result of the treatment with a combination of rhein and EGFR inhibitors. Most interestingly, it was found that rhein considerably sensitized cells to erlotinib, thus suppressing tumor growth in PANC-1 and BxPC-3 xenograft models. The in vivo anti-tumor effect was associated with increased apoptosis and combined inhibition of the STAT3 and EGFR pathways in tumor remnants.ConclusionsRhein sensitizes human pancreatic cancer cells to EGFR inhibitors through inhibition of STAT3. Taken together, the results indicate that rhein offers a novel blueprint for pancreatic cancer therapy, particularly when combined with EGFR inhibitors.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-1015-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.